
E
Quiz 4

F

G H

EECS665 - Compiler Construction
2019, Fall

Name: Student ID:

Do Not Open Until Instructed!

Before the Quiz starts:

• Read all of the instructions on this page
• Write your name and student ID on this page
• Retrieve your page of notes and writing materials
• Put all other materials away and silence your devices

After the Quiz starts:

• Write your student ID (not your name) on all subsequent pages
• If you feel a question is wrong or impossible, notify course staff.
• Announcements / corrections will appear on the projector
• Turn in all your related paper when finished, including:

– your notes page
– the provided quiz itself
– provided reference pages
– provided scratch paper

• You may leave when done (no new material will be presented).
• Work quickly, move on if you are stuck.

Total Questions: 5
Time Limit: 35 minutes
Total Pages:

• 6 pages total

Score: / 50 pts

Feel free to draw Drew
in the box below to pass the time

Page 1 of 6

Student ID:

Question 1 (10 Points)
Imagine a compiler for our language where:

• All arguments are passed on the stack

• The target is a 16-bit architecture (the only significance being that addresses and ints
are 2-bytes - you may use the X64 instructions and registers as if they worked on a
2-byte architecture).

Consider this (partial) memory snapshot of the stack for a running program whose executable
had been compiled by this compiler

0x7ff8

rsp rbp

0x7fea 0x7fee

0x40400x2

address
0x7fec
address address

0x7ff0

0x7fe2 0x7fe6

0x40400x4

address
0x7fe4
address address

0x1

0x7fe8
address

0x7ff0
address

Write a snippet of source code that could generate a program inducing this snapshot.
You may include code that is not part of the snapshot, but be sure to indicate what part of
your program corresponds to the memory snapshot here.

Page 2 of 6

Student ID:Question 2 (10 Points)

Part I (5 points)

Apply a peephole optimization to the following code. Assume that the below snippet occurs
within a single basic block:

I1: subq $8, %rsp
I2: movq $8, (%rsp)
I3: movq (%rsp), %rax
I4: addq $8, %rsp

Part II (5 points)
The below code has a data hazard. Optimize the code such that the hazard is lessened /
avoided (Assume that the below snippet occurcs within a single basic block):

addq %rax, %rax
subq $12, %rax
addq %rbx, %rbx
subq $12, %rbx

Page 3 of 6

Student ID:Question 3 (5 Points)
The compiler toolchain that we discussed in class corresponds to 4 components. Explain

what each of these components do:

• The compiler:

• The assembler:

• The linker:

• The loader:

Page 4 of 6

Student ID:Question 4 (10 Points)
1. int haw(int a){
2. int local;
3. local = 2;
4. a = 3;
5. }
6. int hem(){
7. int a;
8. int b;
9. int c;

10. b = 1;
11. haw(b);
12. }

Assume pass-by-reference for parameter passing in the above code. Write out the X64 code
corresponding to the call to haw at line 11. Assume that all parameters are pushed onto
the stack such that the final argument is pushed first. Also, make sure you include code to
deallocated the pushed arguments from the stack after the call instruction completes (assume
no optimization).

Page 5 of 6

Student ID:Question 5 (10 Points)

Part I

Write out a snippet of X64 code for the function prologue for the function hem.

Part II

Write out a snippet of X64 code for the function epilogue for the function hem. Your function
epilogue should correspond to the prologue you wrote in Part I.

Page 6 of 6

X64 Reference
• movq <opd1> <opd2>

Copy the value of opd1 into opd2

• addq <opd1> <opd2>
Put the result of opd2 + opd1 into opd2

• subq <opd1> <opd2>
Put the result of opd2 − opd1 into opd2

• callq <lbl>
Push the address of the next instruction onto the stack and move %rip (the instruction
pointer) to the address <lbl>

• retq <lbl>
Pop the stack and put the result into %rip

• cmpq <opd1> <opd2>
Set rflags according to <opd2> - <opd1>

• je <lbl>
jump to <lbl> if rflags indicates a = relation on prior operands

• jne <lbl>
jump to <lbl> if rflags indicates a ̸= relation on prior operands

• jge <lbl>
jump to <lbl> if rflags indicates a ≥ relation on prior operands

• jl <lbl>
jump to <lbl> if rflags indicates a < relation on prior operands

• jle <lbl>
jump to <lbl> if rflags indicates a ≤ relation on prior operands

