QUIZ 4

Page 1 of 7

Name: Student ID:

DO NOT OPEN UNTIL INSTRUCTED!

Before the Quiz starts:

e Read all of the instructions on this page
Write your name and student ID on this page
Locate your page of notes, if you have one
Prepare your writing materials

Put all other materials away

After the Quiz starts:

e Write your student ID (not your name) on all subsequent pages

e Announcements / corrections will appear on the projector

e Turn in your quiz and note page to Drew when finished.

e After the quiz time expires, answers may be presented but no
new material will be given.

The quiz consists of 5 questions. You will have 25 minutes to complete
all questions. Work quickly and move on if you are stuck. If you’d
like to pass the time before the quiz starts or before it ends, feel free
to draw a picture of yourself in the box below:

Page 2 of 7

Student ID:

QUESTION 1 (2 POINTS)

Consider the following program snippet:

1. int glob = 1;

2. void goofy(int argl, int arg2){
3. int a = b;

4. glob = 6;

5. argl = arg2 + 7,

6. %

7. int main(){

8. int a = 2;

9. int b = 3;

10. goofy(a, glob);

11. print a + " " + b+ " " + glob + "\n";
12. }

What does the program print under each of the following parameter passing schemes?

Pass by value:

Pass by reference:

Pass by name:

You may choose to make reasonable assumptions about unspecified program semantics. If
any of these assumptions are non-obvious, describe them below.

Page 3 of 7

Student ID:

(QUESTION 2 (2 POINTS)

Consider the following program snippet:

1. idint varl = 10;

2. int var2 = 20;

3. wvoid first(){

4. int varl = 30;
5. void second(){
6. print varl;
7. print " ",
8. print var2;
9. print "\n";
10. +

11. second() ;

12. }

13. int main(){

14. int varl = 40;
15. int var2 = 50;
16. first();

17. }

What does the program print under each of the following scoping schemes?

Static scoping:

Dynamic scoping:

You may choose to make reasonable assumptions about unspecified program semantics. If
any of these assumptions are non-obvious, describe them below.

Page 4 of 7

Student ID:

(QUESTION 3 (2 POINTS)

A common optimization trick is specialize compilation for “leaf functions”, i.e. those functions
that have no callees. What data is typically kept in an activation record that would not need
to be tracked in a leaf function? Explain why leaf functions do not need to keep track of
that data.

Page 5 of 7

Student ID:

(QUESTION 4 (2 POINTS)

Recall that in MIPS, the compiler might take advantage of “delay slots” when scheduling
instructions. Assume the following block of code:

1w $t0 0($sp)
. nop

addi $t0 $t0 1
addi $t1 $t0 1
addi $t2 $t2 1

g W=

This code assumes a single-instruction delay slot in the load instruction, and hence puts a
nop (no operation) at that instruction. Is it possible to take advantage of the load slot by
rearranging the instructions above and eliminating the nop? If so, write out the sequence(s)
of rearranged instructions. If you have any assumptions about MIPS semantics, describe
them as well.

Page 6 of 7

Student ID:

(QUESTION 5 (2 POINTS)

Assume an architecture in which the stack grows upwards (towards high memory). Im-
plement the push and pop instructions in MIPS. If you have any assumptions about AR
conventions, write them out as well (e.g. the stack pointer points to a free memory address).

Page 7 of 7
MIPS REFERENCE
In the below ("regX") refers to a register, imm refers to an constant (immediate) value.

jal <Label>
Jump to address stored at <Label>, set $ra to address of the next instruction.

jr <reg>
jump to the address held in <reg>

sub <regl> <reg2> <reg3>
regl = reg2 - reg3

add <regl> <reg2> <reg3>
regl — reg2 + reg3

subi <regl> <reg2> <imm>
regl = reg2 - imm

addi <regl> <reg2> <imm>
regl = reg2 + imm

1w <regl> <imm>(<reg2>)
Set <regl> to the value at memory address <reg2> + <imm>

sw <regl> <imm>(<reg2>)
Set the value at memory address <imm™> -+ <reg2> to the value in <regl>

