QUIZ 1

EECS665 - Compiler Construction
2019, Spring

Name: Student ID:

DO NOT OPEN UNTIL INSTRUCTED!

Before the Quiz starts:

e Read all of the instructions on this page
Write your name and student ID on this page
Retrieve your page of notes, if you have one
Prepare your writing materials

Put all other materials away
After the Quiz starts:

Write your student ID (not your name) on all subsequent pages
Announcements / corrections will appear on the projector
Turn in your quiz and note page to Drew when finished.

After the quiz time expires, answers may be presented but no
new material will be given.

The quiz is worth 50 points and consists of 5 questions. You will have
35 minutes to complete all questions. Work quickly and move on if
you are stuck. If you’d like to pass the time before the quiz starts or
before it ends, feel free to draw a picture of yourself in the box below:

Page 1 of 7

drew
Pencil

drew
Pencil

drew
Pencil

drew
Pencil

drew
Pencil

drew
Pencil

drew
Pencil

Student ID:
NOTE: Several of the questions on this quiz refer to the DOTGOBBLER language. This is
a simple language created for the purpose of this quiz. Necessary details of the language are
presented in the last 2 pages of the quiz, which do not contain questions. You are free to
detach these pages from the rest of the quiz.

(QUESTION 1 (10 POINTS)

Create tokenization patterns for the four terminal symbol types intlit, id, assign, and dot
of DOTGOBBLER.

You may express your rules as a tokenizer action table, or a sequence of flex rules, or an
automaton with the ability to return tokens and spit back input characters at final states
(your choice). If you use flex syntax, your actions may simply return the token type (i.e
return dot rather than exactly specifying TokenTypes, etc.)

Note: Descriptions of the tokens are written at the end of this document in the Lezical Details
section. You may tear the description pages off if you like.

ISTILE T R
\ ots ZMLWV‘ 591,
Ny i\f@%w‘/v\ &S ¢ 1gu S

/

[i? 2 refusn Aof;{
T2 hZ]y [o2hZ] 3 churn ik

Page 2 of 7

drew
Pencil

Student ID:

QUESTION 2 (10 POINTS)

Create an EBNF grammar that recognizes any valid Program in the DOTGOBBLER lan-
guage. You may name your non-terminal symbols however you choose.

Note: Descriptions of the syntax are written at the end of this document in the Syntactic
Details section. You may tear the description pages off iof you like.

P /‘djfm bo = ﬂfa]tcmm)Lf } ¢
J kM%-e mo\/];\T w= J er-cvv\@/\,). 3 Jm{'éu«rxﬁ/\b
) § fake ment
{ fabe Ment ‘e R Ferance m(ﬂl’?m E7<PV‘€({ (¥

Re'{tl‘(z.,toﬁ ‘s f (L (LA‘ Refcfcv\cq

E){{um;m ’»:l— Qe]ﬁcmnce,l M{'M’

QUESTION 3 (10 POINTS)

Create an input to a DOTGOBBLER compiler that would pass tokenization, but would not

pass parsing.

Page 3 of 7

drew
Pencil

Student ID:

QUESTION 4 (10 POINTS, DIVIDED)

You are given an NFA with 3 states, and a claim that there is an equivalent DFA with 10
states.

PART A (5 POINTS):

Is it possible for such a DFA to exist? Explain your reasoning.

Vos ~ while an NFA willh 3 slafes s - V\eCcmm'\7
be Gwml‘m\mi‘ to {SUW\Q DTA w\‘LL of:% 5“‘65/

&t o e()wf[/a\(et majne (/Vlctz/ hve euen wipg qul,(@'.

PART B (5 POINTS) \b;%ﬂb :;\{)L7@%@—i70ﬁ7()f70d;701\0:>©i‘,®

Is it possible for a DFA with fewer states than 10 to be equivalent to the given NFA? Explain
your reasoning.

\/ég_ Tne VM‘O.'/\—&OM boweriel o ChrugHon
jMJMJrf_eg fant u VEA withy Lk

habe eS an epuvilent DEA by of et
lk s Ites

Page 4 of 7

drew
Pencil

Student ID:

QUESTION 5 (10 POINTS)

Consider the following Syntax-Directed Translation scheme:

f A

Az B
x Cy
Z

k

Aj.trans = Ay.trans + 1 L H(f—fm = A -}/44)’ + ,
A.trans = C.trans + 1 (qmﬂ_ 7 VI '}Wf C tvdu 5 (
g.trans =2 N{-\-l-(g‘/\ K ﬁivm [T

Arans =3 LIH {’/'-\f\ C 3

What is the syntax-directed translation for the root of the following parse tree?

L,L

[,
g/l\ A

6
\ [7
)AJ\ L

k/i\‘\)

/N

ﬂ

y4 B

oo b
z\

L

Page 5 of 7

drew
Pencil

drew
Pencil

drew
Pencil

drew
Pencil

drew
Pencil

DOTGOBBLER LEXICAL DETAILS

The DOTGOBBLER language consists of four token types:

e intlit: Corresponds to an integer literal. An integer literal may consist of sequences
of the digits 0-9 but the first digit must not be 0.
Examples:
102 is an intlit.
012 is not an intlit (starts with a 0).

e id: Corresponds to an identifier. Identifiers in DOTGOBBLER are any sequences of
alphabet characters, with two additional constraints:

— Identifiers must include the character g at least once.

— Identifiers must not be keywords.

Examples:

anger is a indentifier (contains a g, is not a keyword).

g is a indentifier (contains a g, is not a keyword).

anvil is not an identiifer (does not contain g).

gets is not an identiifer (it is an assign keyword, described below).
getss is a indentifier (despite containing a keyword).

e assign: Used for assignment. There are two sequences that match assignment

— The word gets
— The equals (=) symbol.
Examples:

g gets 7 would be tokenized as id assign intlit.
ga = 28 would also be tokenized as id assign intlit.

e dot: Used for field reference. Corresponds to the period symbol (.)
Example:
ga.gb.gc would be tokenized as id dot id dot id.

Page 6 of 7

DOTGOBBLER SYTACTIC DETAILS

e A Program is a sequence of zero or more Statements. Note that each Statement is not
separated by semicolons.

e A Statement consists of a Reference, followed by an assign token, followed by an Fi-
Pression.

e A Reference consists of one or more ids separated by dots. For example,

e An Expression consists of a Reference or an intlit.

Assume the DotGobbler tokenizer strips whitespace, including newlines. The following are
valid DOTGOBBLER programs:

Example 1
ga — gb

Example 2: (the empty string)

Example 3
ga.gh = gb
gd = ga.gb.ga

Example 4
ge — 7
gd gets 7
gm = 7

Page 7 of 7

	Untitled

