Checkin 35

Give an example of a forward dataflow analysis and an example of a backward dataflow analysis.

Announcements

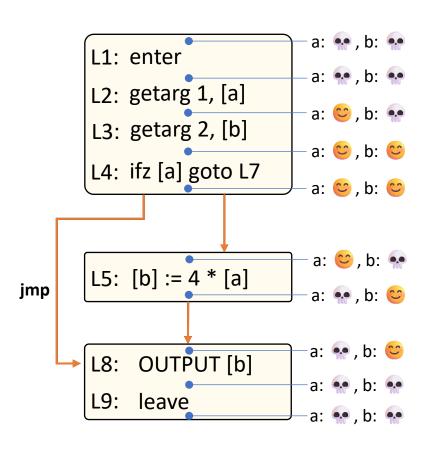
Review: Dataflow

Drew Davidson | University of Kansas CONSTRUCTION

Abstract Interpretation

Previously... Review: Dataflow

Global Dataflow analysis


- Intuition
- Operations

You should know

- The basic concepts of dataflow facts
 - Backwards and Forward analysis
 - Augment local analysis with "IN" and "OUT" sets
 - You need to merge fact sets

Merging Fact Sets Dataflow Intuition

Fact sets may be different when multiple successors/predecessors join

Need to merge incoming fact sets

Merge as conservatively as possible

- Don't do anything without a guarantee!
- Plan for all possible flows

Example: is L3 live? (consider both block paths)

- L3 definition clobbered on the fallthrough branch (at L5)
- L3 definition not clobbered on the jump branch

Today's Outline IR Optimization

Rounding out dataflow analysis concepts

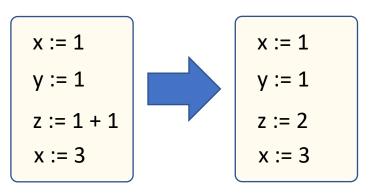
- Some more examples
- Considering more complex code
- Dataflow Framework

Abstract Interpretation

- Concepts
- Examples

Refresh Constant/Copy Propagation

Dataflow: Formalization


Copy Propagation

- Replace RHS of simple assigns with value of assign (if known)
- Forward analysis

x := 1	x := 1
y := x	y := 1
z := x + y	z := 1 + 1
x := 3	x := 3

Constant folding

- Replace constant RHS expressions with value
- Traversal order isn't important

Example Analyses

Dataflow: Formalization

Dead Code Elimination

- Backwards analysis
- Fact sets: the liveness of each variable

Known	Known	Not Enough
Live	Dead	Info
3		**

• Merge:

Constant Propagation

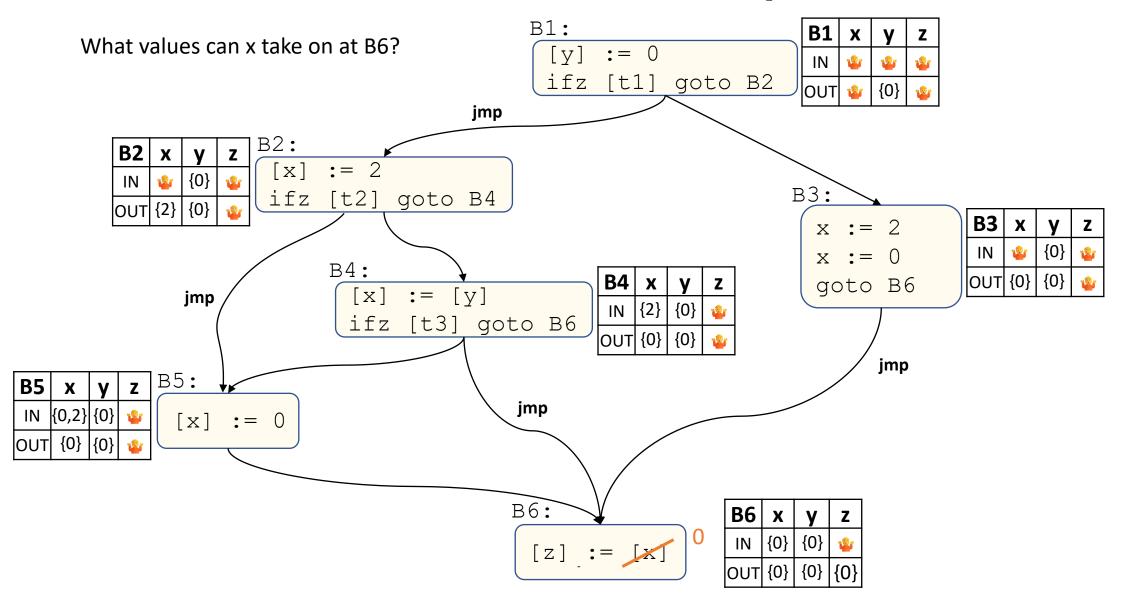
- Forward analysis
- Fact sets: the known value of each variable

Set of Known Values	Not Enough Info	Lyn
{ <value>, <value2},< td=""><td>**</td><td>9</td></value2},<></value>	**	9

• Merge:

Set Union

$$\{1\} \cup \{1,2\} = \{1,2\}$$


...except

907=9

Example Constant Propagation

Dataflow: Formalization - Example

Today's Outline IR Optimization

Rounding out dataflow analysis concepts

- Some more examples
- Considering more complex code
- Instantiating Dataflow Framework

Abstract Interpretation

- Concepts
- Examples

Handling Practical Programs Global Dataflow: Formalization

Global variables

- We only have visibility into 1 procedure
- Be conservative about the effect of other procedures
 - Reset fact sets across a call
 - Consider global variables live at function end

Analysis Termination Dataflow: Formalization

In the previous examples, we completed in one pass over the **CFG**

 This won't always be the case, due to a fundamental construct...

Analysis Termination Dataflow: Formalization

In the previous examples, we completed in one pass over the **CFG**

- This won't always be the case, due to a fundamental construct... loops
- Loops (specifically back edges) create cyclic dependencies

Oh bröther, you might have some lööps

Today's Outline Abstract Interpretation

Rounding out dataflow analysis concepts

- Considering more complex code
- Termination

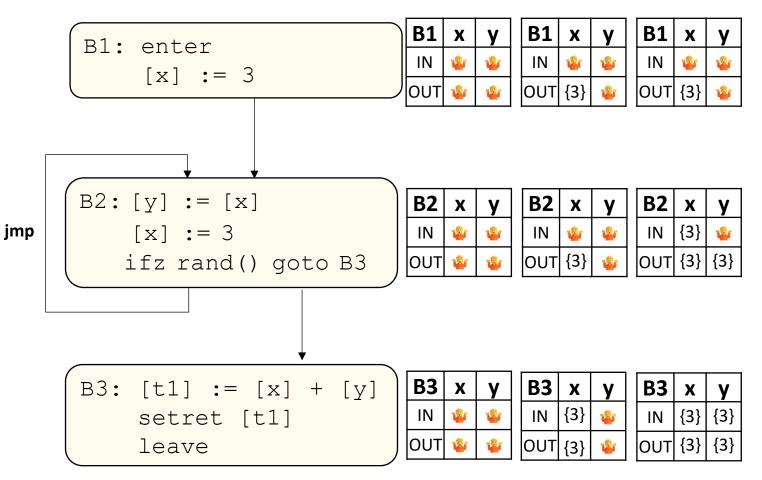
Abstract Interpretation

- Concepts
- Examples

Loops: Dependency cycles

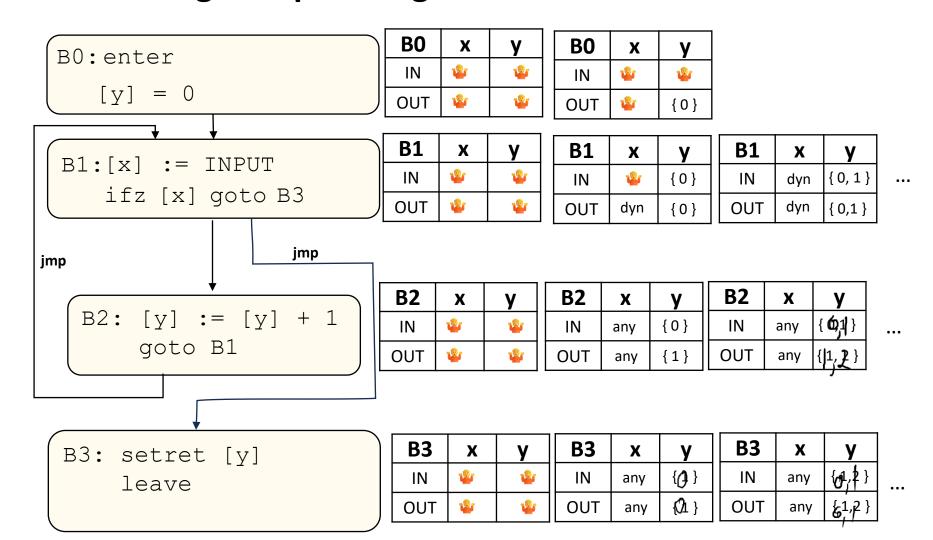
Abstract Interpretation: Formalization

Constant propagation


IN(B2) requires knowing OUT(B2) OUT(B2) requires knowing IN(B2)

- Start sets "TBD" (is) value
- Run the algorithm until sets don't change

We've seen the saturation approach before


(FIRST and FOLLOW sets)

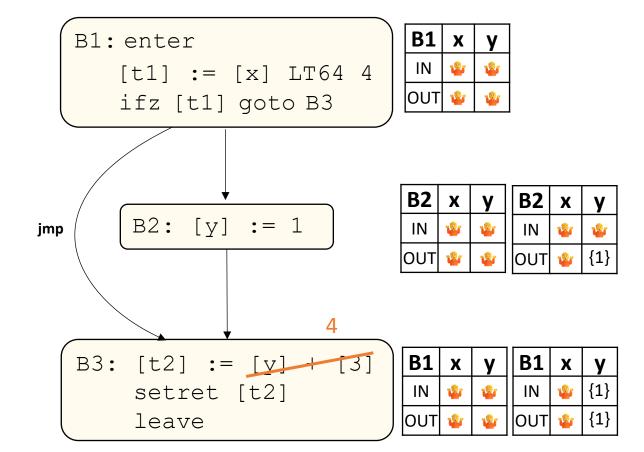
Complicated Fact Sets

Abstract Interpretation: Loops

Fact sets can grow quite large

Handling Practical Data Abstractions

Global Dataflow: Formalization

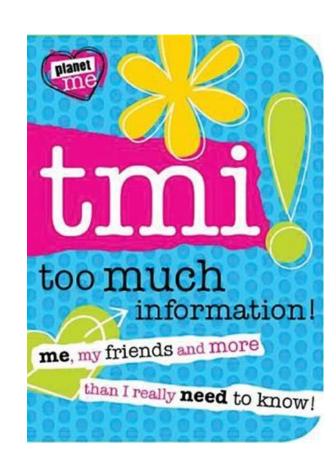

Undefined Behavior

```
int main() {
  int x,y;
  if (x == 4) {
    y = 1;
  }
  return y + 3;
}
```

• Could we fold y + 3?

Ain't no law against it!

Would need to have types of unknowns



Complicated Fact Sets

Dataflow: Formalization

Occasionally, fact sets exceed their usefulness, e.g.:

- Constant
 propagation: once
 we have > 1 value
 in a set, we don't
 really care what the
 values are
- Change the domain of values to match what we can learn / use in analysis

Complicated Fact Sets

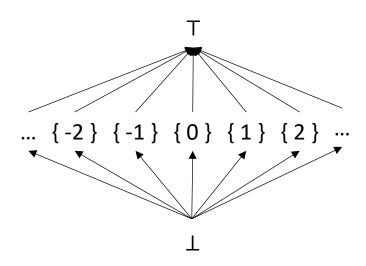
Dataflow: Formalization

Occasionally, fact sets exceed their usefulness, e.g.:

- Constant
 propagation: once
 we have > 1 value
 in a set, we don't
 really care what the
 values are
- Change the domain of values to match what we can learn / use in analysis

Before

Set of Known	We Don't
Values	Know
{1}, {1,2},	2

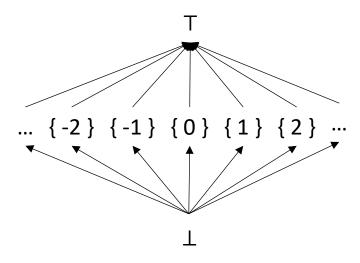

After

Single Constant	We Don't	Could be
Value	Know	Anything
1, 2, 3,	T	Т

Ranking Fact Sets Dataflow: Formalization

Values form a *lattice* Values merge to their least upper bound

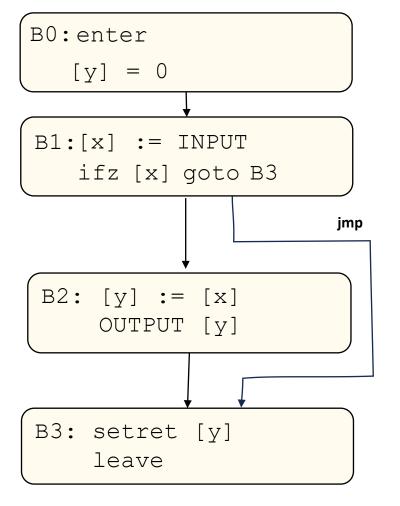
Before


Set of Known	We Don't
Values	Know
{1}, {1,2},	*

After

Single Constant	We Don't	Could be
Value	Know	Anything
1, 2, 3,	T 💉	Т

Reaching a Fixpoint Dataflow: Formalization


Values form a *lattice*Values merge *to their least upper bound*

When the lattice has a finite size:

- Guarantees termination of the analysis
 - Merges are monotonically non-decreasing
 - Local steps add finite element from the lattice
 - Stop when no set grows

Incorporating Predicates Dataflow: Formalization

В0	X	у
IN	Τ	1
OUT	Τ	Т

В0	Х	у
IN	_	1
OUT	7	0

В0	Х	у
IN		
OUT		

B1	X	у
IN	1	Τ
OUT	Ţ	Ţ

Вф	X	у
IN	4	0
OUT	+	

В0	Х	У
IN		
OUT		

B2	Х	у
IN	Т	1
OUT	Τ	Τ

В0	Х	У
IN	+	0
OUT	7	Ó

]	В0	X	у
	IN		
1	OUT		

В3	х	у
IN		Т
OUT	1	Т

\sim		
В6	X	y
ĺΝ	7	0
OUT	7	Ď
		•

В0	X	у
IN		
OUT		

Covered some key optimization concepts

- Inter-block (global) analysis
- Dataflow frameworks:
 - Define fact sets and how they interact

Next Time – Static Single Assignment (SSA)

A program form that eases and enhances optimization