Checkin 35

Give an example of a forward dataflow analysis and an example of a
backward dataflow analysis.

Announcements

Review: Dataflow

Drew Davidson | Umver5|ty of Kansas

: . l —

MM ! v n" n !ﬁr-— NS f
CONSTRUCTION

—7

Abstract Interpretation

Previously...

Review: Dataflow

Global Dataflow analysis
* |Intuition
* Operations

~

/ You should know
* The basic concepts of dataflow facts
- Backwards and Forward analysis
- Augment local analysis with “IN” and “OUT” sets
- You need to merge fact sets

N /

Optimization

jmp

Merging Fact Sets

Dataflow Intuition

L1:
L2:
L3:

L4:

enter

a: ee

getarg. 1, [a]
([

getarg 2, [b]

ifz [a] goto L7

L5

. [b] :=4 * [a]

|

LS:
L9:

OUTPUT [b]

leave
[]

Fact sets may be different when multiple
successors/predecessors join

* Need to merge incoming fact sets

Merge as conservatively as possible

* Don’t do anything without a guarantee!

* Plan for all possible flows

Example: is L3 live? (consider both block paths)

* L3 definition clobbered on the fallthrough
branch (at L5)

* L3 definition not clobbered on the jump branch

Today’s Outline

IR Optimization

Rounding out dataflow analysis concepts
* Some more examples

* Considering more complex code

* Dataflow Framewaerk

Abstract Interpretation

* Concepts

* Examples

Optimization

Refresh Constant/Copy Propagation

Dataflow: Formalization

Copy Propagation

x:=1 X:=1
* Replace RHS of simple assigns _ 1
with value of assign (if known) y-=x » y-=
e Forward analysis Z:=X+y z:=1+1
X = X =
Constant folding
* Replace constant RHS x:=1
expressions with value yi=1

* Traversal order isn’t important

Dead Code Elimination
* Backwards analysis

e Fact sets: the liveness of
each variable

Example Analyses

Dataflow: Formalization

* Forward analysis

each variable

Constant Propagation

e Fact sets: the known value of

{<value>, <value2}, ...

* Merge:
Set Union

{1}tu{12}={1,2}
...except

T

L\/\

Example Constant Propagation

Dataflow: Formalization - Example

BR1l:

What values can x take on at B6? [v] :=
[ifz [t

0
1] goto B2 }

B2\ x|y |z
IN | & [{0}] &
ouT|{2}| {0} | @

jmp [x] = Iy
[' £3] } =

{2} {0} &

B5

{0,2}{{0}| w

ouT

{0} [{O}] &

{0} | &

{0}

{0}

{0}

{0}

{0}

{0}

10}

Today’s Outline

IR Optimization

Rounding out dataflow analysis concepts
* Some more examples

* Considering more complex code

* Instantiating Dataflow Framework
Abstract Interpretation

* Concepts

* Examples

Optimization

10

Handling Practical Programs

Global Dataflow: Formalization

Global variables
* We only have visibility into 1 procedure

* Be conservative about the effect of other
procedures
* Reset fact sets across a call
* Consider global variables live at function end

Analysis Termination

Dataflow: Formalization

In the previous examples, we
completed in one pass over the

CFG

* This won’t always be the case,
due to a fundamental construct...

12

Analysis Termination

Dataflow: Formalization

In the previous examples, we
completed in one pass over the
CFG

* This won’t always be the case,

due to a fundamental construct... loops
* Loops (specifically back edges)

create cyclic dependencies

R

Oh brother, you might have some 166ps

13

Today’s Outline

Abstract Interpretation

Rounding out dataflow analysis concepts
* Considering more complex code

* Termination

Abstract Interpretation

* Concepts

* Examples

Optimization

14

Loops: Dependency cycles

Abstract Interpretation: Formalization

Solution: Saturate fact sets

e Start sets “TBD” (s) value

* Run the algorithm until sets don’t
change

We’ve seen the saturation
approach before

e (FIRST and FOLLOW sets)

jmp

Constant propagation

IN(B2) requires knowing OUT(B2)
OUT(B2) requires knowing IN(B2)

|

Bl: enter
[x] := 3
B2: [y] := [x]
[x] := 3

ifz rand () goto B3

B3:

[t1l] := [x] + [y]
setret [tl]
leave

Bl x|y |(Bl|{x|y|(Bl|x|Yy
IN | & | IN | @ | IN | & |
OUT| & | & | louT|{3}| & | [OUT|{3}| &
B2 x|y ||B2{x |y |[|B2|x]|Yy
IN | o | & IN | & | & IN {3} P
OUT| & | & | |ouT|{3}| & | |ouUT|{3}| {3}
B3| x|y |[B3|x|y|[B3|x]|Yy
IN | & [& [|IN ({3} & || IN|{3}] {3}
OUT| & | & | |OUT|{3}| & | |ouT|{3}] {3}

15

Complicated Fact Sets

Abstract Interpretation: Loops

Fact sets can grow quite large

BO: enter
[yl =0

|

A

INPUT

Bl:[x]
1fz [x] goto B3

|

jmp

J jmp

B2: [yl := [y] + 1
goto Bl
B3: setret [y]
leave

BO | x | vy BO | x | vy
IN ¥ s IN [+ i
OuT | W “ || ouT | @ | {o}
Bl | x | vy BlL | x | y BL | x | y
IN g W IN & | {0} IN dyn ({0, 1}
OouT | w L OUT | dyn | {0} OUT | dyn [{0,1}
B2 | x | vy B2 | x | vy B2 | x | vy
IN | @ & IN | any | {0} IN | any |{@]}
OuUT | & & OUT | any | {1} OUT | any {ll.'.Z}
B3 | x | vy B3 | x | vy B3 | x | vy
IN | @ @l IN ey [QY || IN | any |{@d)
OUT | w ¥ OUT | any | {1} OUT | any &-1,,2 } 16

Handling Practical Data Abstractions

Global Dataflow: Formalization

Undefined Behavior Bl: enter Bl x|y
[t1] := [x] LT64 4 |[IN|% %
int main () { ifz [tl] goto B3 OUT| & |
int x,y;
if (x == 4){
y = 1
} B2 x|y ||B2| x|y
return y + 3; jmp [BZ: [yl =1 } IN | @ | @ [|IN|&]|@
, OUT| & | & ||ouT| @ | {1}

}
* Could we fold y + 3?

IN [& | & || IN [({1}

Would need ouT| & | & |louT| & | {1}

[5]}ley Bl x|y

to have types
of unknowns

17

Complicated Fact Sets

Occasionally, fact
sets exceed their
usefulness, e.g.:

* Constant
propagation: once
we have > 1 value
in a set, we don’t
really care what the
values are

* Change the domain
of values to match
what we can learn /
use in analysis

Dataflow: Formalization

So % t.ha.nIPea.lIyneedtOknOWI

18

Complicated Fact Sets

Occasionally, fact
sets exceed their
usefulness, e.g.:

* Constant
propagation: once
we have > 1 value
in a set, we don’t
really care what the
values are

* Change the domain
of values to match
what we can learn /
use in analysis

Dataflow: Formalization

Before

{1}, {1,2}, ...

After

1,2, 3, ..

g

Allows
“ranking” fact
sets

Ranking Fact Sets

Dataflow: Formalization

Before
Values form a lattice Set of Known

Values merge to their least upper bound Values
{1}, {1,2}, ... &

T

/T\ Atter
Could be

Single Constant We Don’t

oo {2} {-1} {0} {1} {2} -

Value Anything
W 1,2, 3, .. 1 \\i\ T \&\

1

20

Reaching a Fixpoint

Dataflow: Formalization

Values form a lattice When the lattice has a finite size:

Values merge to their least upper bound) . .
 Guarantees termination of the analy5|s

T * Merges are monotonically non-decreasing
/I\ * Local steps add finite element from the
lattice
- =23 {1} {0} {1} {2} - « Stop when no set grows

W

1

Incorporating Predicates

-

\

BO: enter
- Lyl =0 Y,
s) N
Rl:[x] := INPUT

1fz [x] goto B3

Dataflow: Formalization

T

B2: [y] := [x]
OUTPUT [vy]

B3: setret [y]
leave

BO X Yy BO X Yy BO
IN 1 1 IN 1 1 IN
ouT 1 1 ouT 1 A ouT
B1 X y BY X y BO
IN 1 1 IN +~ 0 IN
ouT 1 1 ouT -+ é) ouT
B2 X y &g_ X y BO
IN 1 1 IN T 0 IN
ouT L 1 ouT T ®) ouT

N
B3 X Yy BS X Yy BO
IN 1 1 N T | () IN
ouT 1 1 ouT T | D ouT

22

summary

IR Optimization

Covered some key optimization concepts
* Inter-block (global) analysis

* Dataflow frameworks:
* Define fact sets and how they interact

Next Time — Static Single Assignment (SSA)

* A program form that eases and enhances
optimization

	Slide 1: Checkin 35
	Slide 2: Announcements Review: Dataflow
	Slide 3: Abstract Interpretation
	Slide 4: Previously… Review: Dataflow
	Slide 5: Merging Fact Sets Dataflow Intuition
	Slide 6: Today’s Outline IR Optimization
	Slide 7: Refresh Constant/Copy Propagation Dataflow: Formalization
	Slide 8: Example Analyses Dataflow: Formalization
	Slide 9: Example Constant Propagation Dataflow: Formalization - Example
	Slide 10: Today’s Outline IR Optimization
	Slide 11: Handling Practical Programs Global Dataflow: Formalization
	Slide 12: Analysis Termination Dataflow: Formalization
	Slide 13: Analysis Termination Dataflow: Formalization
	Slide 14: Today’s Outline Abstract Interpretation
	Slide 15: Loops: Dependency cycles Abstract Interpretation: Formalization
	Slide 16: Complicated Fact Sets Abstract Interpretation: Loops
	Slide 17: Handling Practical Data Abstractions Global Dataflow: Formalization
	Slide 18: Complicated Fact Sets Dataflow: Formalization
	Slide 19: Complicated Fact Sets Dataflow: Formalization
	Slide 20: Ranking Fact Sets Dataflow: Formalization
	Slide 21: Reaching a Fixpoint Dataflow: Formalization
	Slide 22: Incorporating Predicates Dataflow: Formalization
	Slide 23: Summary IR Optimization
	Slide 24
	Slide 25
	Slide 26
	Slide 27

