Checkin 34

Draw the CFG of this procedure

f: () void{
a:int;
a = 256;
while(true){
if (a > 500){
a = a++;
}
}
}

Announcements

Administrivia

P7 out tonight

B2 Drew Davidson | University of Kansas

MM n . n" n !ﬁr— -—

CONSTRUCTION

Dataﬂovv

s s

Previously...

Review Lecture: Flowgraphs

Control flow graphs:

A hybrid IR/ a structural overlay
e Rationale

Useful for visualizing program flow

e Construction _

You should know \

Basic Blocks
How to build a CFG
The idea of some local optimizations
- Dead Code Elimination
- Common Subexpression
Elimination
- Constant/Copy Propagation

Identify basic blocks (BBLs)
Connect edges on control transfer

e Uses

Program understanding

Optimization

Recall: Some Local Optimizations

Review - Basic Block Optimization

7

.

=t
- S[x] =2)

e

OUTPUT [x]+

(V)

Dead Code Elimination: Guaranteed no future use
of this definition (the assignment is not “live”)

Constant Propagation: Guaranteed
previous static definition of this use

Is this definition live?

Without knowing x’s use
outside this block

We have to keep it

Today’s Outline

Dataflow

Dataflow analysis
[* [ntuition]
* Concepts

e Dataflow frameworks

Optimization

(DCE) x: e
(DCE) x: ®e
(DCE) x: &

(DCE) x: &

[X] :=1

[X] :=2

OUTPUT [x]

Consider What Info We Know

“Basic Block Optimization

(CP) x: &

(CP) x: 1
(CP) x: 2

(CP) x: 2

For Dead Code Elimination,
definition could be marked

Known Not Enough
Dead

Known
Live

Info

Dead Code Elimination: Guaranteed no future use
of this definition (the assignment is not “live”)

Constant Propagation: Guaranteed
previous static definition of this use

For Constant Propagation,
use could be marked

Guaranteed Guaranteed Not Enough

Constant Non-Constant Info

<value> >1valueor 4 &

Backwards
analysis
| (DCE) X. ®so - PP (CP) X" ‘&
[x] ;=1
(DCE) x: @ oo (CP) x: 1
[X] :=2
(DCE) x: & oo (CP) x: 2
OUTPUT [x]
(DCE) X: \Sb L o0] (Cp) X: 2
Forwards
analysis

For Dead Code Elimination,
definition could be marked

Known Known Not Enough

Live Dead Info

Consider Where We Learn Info

Basic Block Optimization

Dead Code Elimination: Guaranteed no future use
of this definition (the assignment is not “live”)

Constant Propagation: Guaranteed
previous static definition of this use

For Constant Propagation,
use could be marked

Guaranteed

Guaranteed Not Enough
Non-Constant Info

> 1 valueor 4 &

Constant

<value>

Beyond Local Optimization

Dataflow
One possible CFG
#TCC00306
, ~ "Thinking Outside
: '
L1: enter The Block
L2 geta rg 1 [X] A Pattern with Unlimited Possibilities
. 7
L3: ifz [x] goto L7
P \4
L4: P}-=2-
jmp L5: fyl=3-
L6: {z}=De- vl
l Quick & Simple for All Levels
"L7: nop Detied nructons o cng 8 i,
L8 cpeems. it ey QUILTING
. Ieave - Suggestions Included!
\ J ; Quilt Planning Worksheet Invide!
an“usw 7 Size Variations Included!

L6 is dead!
(causes L4 and L5 to be dead)

Beyond Local Optimization

Dataflow
One possible CFG Another possible CFG
L1: enter L1: enter
L2: getarg 1, [x] L2: getarg 1, [X]
L3: ifz [x] goto L7 L3: ifz [x] goto L7
L4: Px}=2- L4: [x] :=2
jmp | [L5: fyl=3- jmp | | L5: [y]l:=3
L6: {z}=Ix]*{yl— L6: [z] := [x] * [y]
, v , , !
»L7: nop » L7: OUTPUT [z]
L8: leave L8: leave
L6 is dead! L6 is live!

(causes L4 and L5 to be dead) Cannot be removed

10

Today’s Outline

Dataflow

Dataflow analysis
[* [ntuition]
* Concepts

e Dataflow frameworks

Optimization

11

jmp

Generalizing Dataflow Intuition

One possible CFG

Dataflow Intuition

Let’s revisit the example, and ask some leading questions

L1:

L2

L3:

enter
- getarg 1, [X]
ifz [x] goto L7

L4

L5

L6:

c[x] =2
. [y]:=3

" L7/:
L8:

Why is L6 dead? = Why isn’t L6 live?

- . oty

Returning to the scene of the crime

12

Generalizing Dataflow Intuition

Dataflow Intuition

Let’s revisit the example, and ask some leading questions

One possible CFG

Why is L6 dead? = Why isn’t L6 live?

L1: enter The thing defined was no longer useful
L2: getarg 1, [X]
L3: ifz [x] goto L7

L4: [x]:=2
jmp L5: [y]:=3

»L7: nop

L8: leave

Generalizing Dataflow Intuition

Dataflow Intuition

Let’s revisit the example, and ask some leading questions

One possible CFG

Why is L6 dead? = Why isn’t L6 live?

L1: enter The thing defined was no longer useful
L2: getarg 1, [X]
L3: ifz [x] goto L7 The thing defined was redefined before use
: =2
14: [x] Need to gather some facts to
jmp | |L5: lyl:=3 tell if a statement is dead
L6: ={x} What variables are useful
4 at each program point?
L7 2l :=3 What variables are killed
L8: write [z] at each program point?
\L9: leave

jmp

o

Generalizing Dataflow Intuition

Dataflow Intuition

One possible CFG

7

L1:
L2:
L3:

enter
getarg 1, [x]
ifz [x] goto L7

\ 4

L4:
L5:
L6:

[X] :=2
[y] =3

[2] = [x] * [y]

\ 4

L7:
L8:
L9:

2] == 3

write [z]

@
leave
[]

XA
L CIRAVAR X
;e y:

; me y: e
TRV

Need to gather some facts to
tell if a statement is dead

What things are useful
at each program point?

What things are killed
at each program point?

nothing live at end of block, because nothing live at entry to successors

Previous definitions of z are not useful, because L7 killed them

z is useful, because it’s used later on (in L8)

nothing is used by leave

(no more code to use anything)

15

o

Generalizing Dataflow Intuition

Dataflow Intuition

One possible CFG

(® Y x: ®e y: ee 7: e enter doesn’t use any variables
L1: enter

X: e y: es 7. es xisclobbered

®

L2: getarg 1, [X]
@

L3: ifz [x] goto L7
@

X: & ,y: es 7. s xgets used in the predicate

\

X: e y: es 7: es nothing live at end of block, because nothing live at entry to EITHER successor

X: ®e y: ee 7. @e x was killed, previous definitions of x would not be useful past this point

Swepne
x
(
<
0
(]
‘N
®
®

L4: [x]:
jmp L5: [y]:=
L6: [z] := lx] * Iyl

\ 4

y was killed but a definition of x will still be used later

X: & ,y: @ ,z: =& Both xandy have been found to be used

J—X: ®e y: es 7. se nothing live at end of block, because nothing live at entry to successor

{17 [Z] 03 X: s y: ee 7. @e Preyvious definitions of z are not useful, because L7 killed them
® X: ®e y: ee 7 & zisuseful, because it’s used later on (in L8)
L8: write [Z]
° X: s y: es 7: ee nothing is used by leave
L9: leave -
\ e X: ®e y: ee 7: @ (no more code to use anything)

16

jmp

Generalizing Dataflow Intuit

One possible CFG

L1:

L2

L3:

enter

®
- getarg 1, [X]
@
ifz [x] goto L7
@

A\ 4

L4

L6

L5

. [X] :=:2
. [y] =3

2= [x]* [y)

\ 4

" L7/:
L8:
L9:

2] == 3

write [z]

@
leave
[]

[]
< < = =
[] [] [] 7

=<
®

Dataflow Intuition

o

lon

17

o o

Initializing Fact Sets

Dataflow Intuition

Technically, we should start all fact sets as “Not enough info” (&). This will matter later

One possible CFG

® T—X: @8 | y: @ 7: ae Xo W, YW,z
L1: enter
® X: &8 y: e 7: s XD W, Y W,z
L2: getarg 1, [X]
. ® X ‘-:,y o8, 7. 00 X @, Y e, 2
L3: ifz [x] goto L7
L ® X: @8 y: a8 7: es X W, Y, 2t
\ 4
r ® X: .,.,y: oo 7. 0s X‘r*;y‘r*;z'f*
L4: [x] =2
® X: &,y o0 7: ae X: W, Y W, 2 g
jmp L5: [y]:=3
® X: &,y &,z oo XD W,y W,z v
L6: [z] := [x] * [y]
\ d X: @8 y: &8 7. e X: W, Yo, 2
\ 4
R ® T IX: @8 y: ea 7: as X: W, Y, 2
"L7: [z] :=
e X: a8 y: es 7: & X: W, Y,z
L8: write [Z]
o X: @8 y: @8 7: ee X W, Y e, 2
L9: Ieave.

X: @8 y: 88 7: 6e X: \, Y\, 2\ 18

jmp

Merging Fact Sets

Dataflow Intuition

L1:
L2:
L3:

L4:

enter

a: ee

getarg. 1, [a]
([

getarg 2, [b]

ifz [a] goto L7

L5

. [b] :=4 * [a]

|

LS:
L9:

OUTPUT [b]

leave
[]

Fact sets may be different when multiple
successors/predecessors join

* Need to merge incoming fact sets

Merge as conservatively as possible

* Don’t do anything without a guarantee!

* Plan for all possible flows

Example: is L3 live? (consider both block paths)

* L3 definition clobbered on the fallthrough
branch (at L5)

* L3 definition not clobbered on the jump branch

Today’s Outline

Dataflow

Dataflow analysis
* |[ntuition

[° Dataflow frameworks]

e Abstract Interpretation

Optimization

20

Harnessing Commonalities of Dataflow Analyses

Dataflow Frameworks

Basic algorithms for many dataflow
analyses follow a common template
with minor variations

* |dea: restate each analysis in terms
of its variations

* Profit: reuse the same algorithm to
get results

21

Harnessing Commonalities of Dataflow Analyses

Dataflow Frameworks

Basic algorithms for many dataflow Variations
analyses follow a common template
with minor variations

* What information is tracked
o * How fact sets are merged
* |dea: restate each analysis in terms

of its variations * The direction of the analysis

* Profit: reuse the same algorithm to
get results

Templated Information Tracking

Dataflow Frameworks

Framework tracks the “interplay between

data” at basic blocks boundaries Bl:[Xl J BZ‘{ Y.< J

For a given basic block b:

[IN(b): facts true on entry to b For a backwards analysis ,
(b) y y IN is at the bottom of the block B3: < M)/ d

* OUT(b): facts true on exit from b | 0T s at the top of the block x:...«f—

 GEN(b): facts created in b l T xidf)/ '
e KILL(b): facts removed in b)

IN(B) = U OUT(p)
pinpred(b)

OUT(b) = GEN(b) U (IN(b) — KILL(b))

23

Dataflow Sets: Example

Dataflow: Formalization

IN(b): facts true on entry to b B1 :[J B2 :[}
OUT(b): facts true on exit fromb _, =5 o0
GEN(b): facts created in b x= {45} v=0
KILL(b): facts removed in b B3:([x] := 2

[x] = [yl

goto B6

IN(B) = OUT x=0,y=0
() Upinpred(b) (p)

OUT(b) = GEN(b) U (IN(b) — KILL(b))

24

Benefits of the Framework

Dataflow Frameworks

When set up properly...
 Safety of the analysis is guaranteed
* Termination of the analysis is guaranteed

* Order of analysis (which block you process) is
unimportant

Compute Live Variables

Dataflow: Formalization - Example

{t5,t2,t1}
B1: [[y] = 0]
| 1fz [tl] goto B2 5, y, t2)
Dead! jmp <
5, y,t2p B3 [x] = 2 t}
B2: [[x}—="2" 'x] := 0
ifz [t2] goto B4 {ts, y}

jmp

B5:([x] := [y]]
ifz [t5] goto B6 »

{x}

Bo:| [2] := [x]
OUTPUT [z])

What values are live at B6?

26

Example Analyses

Dataflow: Formalization

Let’s do some examples in this light
YA slightly bigger dead code elimination example

* Constant propagation
e Recall: replace a variable with it’s known constant value
* Forward analysis
* Fact sets: variable to (sets of) known values

Refresh Constant/Copy Propagation

Dataflow: Formalization

Copy Propagation

* Replace RHS of simple assigns
with value of assign (if known)

* Forward analysis

Constant folding

* Replace constant RHS
expressions with value
* Traversal order isn’t important

=

x:=1
y:=1
z:=1+1
X =
x:=1
y:=1

28

Example Constant Propagation

Dataflow: Formalization - Example

{}

Bl: | [y] =0
ifz [tl] gOtO B2 {y =0}
{y=0) - =0}
BZ:[[X] = 2 J B3:(x .= 2
ifz [t2] goto B4 .
=0, x=2) x := 0
goto B6
{y=0 x=2}

jmp

[v]
[£t5] goto B6
{y=0,x=0}

{y=0 x=0,z=0}

What values can x take on at B6?

29

Handling Practical Data Abstractions

Global Dataflow: Formalization

Global variables
* We only have visibility into 1 procedure

* Be conservative about the effect of other
procedures
* Reset fact sets across a call
* Consider global variables live at function end

Analysis Termination

Dataflow: Formalization

In the previous examples, we
completed in one pass over the

CFG

* This won’t always be the case,
due to a fundamental construct...

31

Loops

Dataflow: Formalization

Loops complicate
dataflow analysis

|

* Create cyclic
dependencies

* Complicate fact sets

o

Oh brother, you might have some 166ps

32

Loops: Dependency cycles

Solution: Saturate fact sets
* Start sets “TBD” (i) value

* Run the algorithm until sets don’t
change

We’ve seen the saturation
approach before

e (FIRST and FOLLOW sets)

Dataflow: Formalization

Constant propagation
IN(B2) requires knowing OUT(B2)
OUT(B2) requires knowing IN(B2)

IN(B1): {x=1@s,y=1&}
Bl: enter
[x] := 3

B2: [y] := [x]
jmp [x] := 3
1ifz rand () goto B2

OUT(B1): {x=3,y= }

IN(B2): {x=a8~y="a |
{x=3, y=1@}

OUT(B2) {x=3-y=&"]

OUT(B3M{x=3-v=& T
{x=3,y=3 }

33

summary

Underview

Covered some key optimization concepts
* Inter-block (global) analysis

* Dataflow frameworks:
* Define fact sets and how they interact

Next Time — Static Single Assignment (SSA)

* A program form that eases and enhances
optimization

	Slide 1: Checkin 34
	Slide 2: Announcements Administrivia
	Slide 3: Dataflow
	Slide 4: Previously… Review Lecture: Flowgraphs
	Slide 5: Recall: Some Local Optimizations Review - Basic Block Optimization
	Slide 6: Today’s Outline Dataflow
	Slide 7: Consider What Info We Know Basic Block Optimization
	Slide 8: Consider Where We Learn Info Basic Block Optimization
	Slide 9: Beyond Local Optimization Dataflow
	Slide 10: Beyond Local Optimization Dataflow
	Slide 11: Today’s Outline Dataflow
	Slide 12: Generalizing Dataflow Intuition Dataflow Intuition
	Slide 13: Generalizing Dataflow Intuition Dataflow Intuition
	Slide 14: Generalizing Dataflow Intuition Dataflow Intuition
	Slide 15: Generalizing Dataflow Intuition Dataflow Intuition
	Slide 16: Generalizing Dataflow Intuition Dataflow Intuition
	Slide 17: Generalizing Dataflow Intuition Dataflow Intuition
	Slide 18: Initializing Fact Sets Dataflow Intuition
	Slide 19: Merging Fact Sets Dataflow Intuition
	Slide 20: Today’s Outline Dataflow
	Slide 21: Harnessing Commonalities of Dataflow Analyses Dataflow Frameworks
	Slide 22: Harnessing Commonalities of Dataflow Analyses Dataflow Frameworks
	Slide 23: Templated Information Tracking Dataflow Frameworks
	Slide 24: Dataflow Sets: Example Dataflow: Formalization
	Slide 25: Benefits of the Framework Dataflow Frameworks
	Slide 26: Compute Live Variables Dataflow: Formalization - Example
	Slide 27: Example Analyses Dataflow: Formalization
	Slide 28: Refresh Constant/Copy Propagation Dataflow: Formalization
	Slide 29: Example Constant Propagation Dataflow: Formalization - Example
	Slide 30: Handling Practical Data Abstractions Global Dataflow: Formalization
	Slide 31: Analysis Termination Dataflow: Formalization
	Slide 32: Loops Dataflow: Formalization
	Slide 33: Loops: Dependency cycles Dataflow: Formalization
	Slide 38: Summary Underview
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

