Check-in #33

Give an example of a snippet of x64 code that benefits from two peephole optimizations

je Lol 4 o LBl
ﬂzm ﬁw =) Lbdy weJrZ #)
L e \3“5(41/ L %o vy
! e B e

Flipped Wednesday

Quiz 3

Quiz 3 — Question 1

Many compilers, including levic, uses multiple intermediate
representations. Describe why each of these IRs are used.

Quiz 3 — Question 2

Write x64 code to compute the sum of an array NUMS and exit v oV t O 0/ “

the program with the sum as the exit value. You may assume ?/

that the length of the array is stored in LEN. That is, complete y g 9

the following assembly program: " 1/]VU‘MS / r (X

lobt_start i (LEVY, % A
NUMS: .quad 6, 3, 2, ... Loé P ' (w\lgy/ $(9)) r ‘AX

et ‘MQ, b Y v Ja AFTER

start :

(your code here) JN\'S L®’©J? 7/ % \ Q/ ./‘A)(

Wv(,/ OCMD %1
B % /afo\z(3t
AFRTER: "“Wg, §0 Ve
J)/j

Quiz 3 — Question 3 ol
wackZ W int | Q/%j ‘lj [Uvg \2‘\1

e AT, Lz SUBf T |
whllir;%); L)): ¢ /Q+ Iqunl;l 3 B{q Z[U-Jl
k%i ieturn argl ; ()03{0 {n\ﬂhhxw\

|
I Lo DLty

}

Convert the above code to 3AC in the manner that a non-
vert the aboy in the manner that a no Sty 1) LY
optimizing compiler would do, in the fashion discussed in class. ; \(J‘{ p
Ca)J o [‘\"3“13
| lﬂwk/

‘LMHG\/]A“-W(\(’\(}/ 7| en ve wwbk/

Quiz 3 — Question 4

What is a runtime environment?

What is the runtime environment for the Levi language?

Quiz 3 — Question 5

Imagine the following code is intended to represent an x64
function call. It violates the System V ABIl in (at least two ways).
Point out two violations

movq $20,
movqg $30,
movq $40,
movqg $50,
movq $90,
movqg $12,
pushq $27

callg my callee
movq %rbx, -32(%rbp)

nop

Jrdi
Jrsi
Jrdx
Jhrex
5r8
%r9

#
#
#
#
#
#
#
#
#

set
set
set
set
set
set
set

make the call
retrieve the return
#(end of the call)

argument
argument
argument
argument
argument
argument
argument

O O = W N

iy Q/W])

v

Allee A W(M

W/ — Question 2

Convert the following function into 3AC

fn v: enter v
getarg 1, [a]
LBL 1: [tmpl] := [a] LT64 2

int v(int a) {

£z [tmpl to LBL 2
while (a < 2){ itz [tmpl] goto -

while (a < 3){ LBL 3: [tmp2] := [a] LT64 3
at+; ifz [tmp2] goto LBL 4
} pR—
at+; [a] = [a] ADDo4 1
} goto LBL 3
return a; LBL 4: nop
} —_—
[a] := [a] ADD64 1
LBL 2: nop

setret [a]
goto end fn v

end fn a: leave v

W/ — Question 3

Convert the 3AC procedure into source code

fn k: enter k

getarg 1, [b] k : (b : int) wvoid {
[1] = [b] i : int;

1bl 1: [t] = [1i] LTe4 10 i~ b
ifz [t] goto 1lbl 2 -
[i] = [1i] ADD64 1 while (1 < 10){
WRITE [1i] 1++;
goto 1bl 1 out << I:

1bl 2: nop

fn end k: leave k J

W/ — Question 4

Assume a language that allows for pass-by-reference or pass-by-value parameters. What would the 3AC code
look like for a pass-by-reference call? lllustrate with an example.

Don’t use the brackets around the variable (which indicate a memory lookup) in the generated setarg / getarg

void foo (inté& arg) { fn foo: enter foo
arg = 3; getarg 1, arg
} end fn foo: leave foo
int main () { fn main: enter mailn
int p; setarg 1, p

foo (p); end fn main: leave main

	Slide 1: Check-in #33
	Slide 2: Flipped Wednesday
	Slide 3: Quiz 3
	Slide 4: Quiz 3 – Question 1
	Slide 5: Quiz 3 – Question 2
	Slide 6: Quiz 3 – Question 3
	Slide 7: Quiz 3 – Question 4
	Slide 8: Quiz 3 – Question 5
	Slide 9: W7 – Question 2
	Slide 10: W7 – Question 3
	Slide 11: W7 – Question 4

