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Virtual memory simplifies the task of the loader. What extra steps does 
the loader need to take without virtual memory? 



Machine Code 
Optimization

University of Kansas| Drew Davidson
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Previously
Post-compilation toolchain

Compiler Toolchains

• Overview

• What GCC Does

Component Walkthrough

• Assembler

• Linker

• Loader
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Compiler Construction
Progress Pics
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Scanner
Lexical analysis

Parser
Syntactic analysis

Semantic analysis

Intermediate code 
generation

IR optimization

Final Code 
generation

Final code 
optimization

Source
Code Finished

• A naïve workflow from source 
code to target code

To-Do

• Clean up some of the corners we 
cut

We’ve focused on correctness over 
efficiency, let’s try to win back 
some efficiency



Today’s Outline
Machine Code Optimization

Overview

Improving data allocation

• Register allocation

Improving Final Code

• Peephole optimization

• Instruction Pipelines
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Optimization



Working With the Architecture
Machine Code Optimization

Good machine code should:

• Play to the strengths of the hardware

• Compensate for weaknesses of the hardware

Such operations depend on specifics of the architecture
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Disclaimer: This is a Deep Area
Machine Code Optimization

We hardly scratch the surface of compiler optimizations

• There are more categories of machine-code optimization 
than we’ll cover

• There are more optimizations within the categories we do 
cover

8

The tip of the iceberg



Today’s Outline
Machine Code Optimization

Overview

Improving data allocation

• Register allocation

Improving Final Code

• Peephole optimization

• Instruction Pipelines
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Optimization



Sizing Activation Records
Machine Code Optimization: Data Allocation

Easy mode: one AR slot for every temp, local, and arg
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Source code
int foo(int a){

   int v;

   int r;

   v = a-a*a;

   r = v - 2;

}

3AC Code
enter foo

getarg 1, [a]

[t1] := [a] * [a]

[v] := [a] - [t1]

[r] := [v] - 2 
foo AR

old RBP old RIP

%rsp %rbp 

int r int t1 int v int a

Memory at Runtime

Surely one could use fewer memory slots!

Maybe we could 
share some slots



Liveness
Machine Code Optimization: Data Allocation

• A definition is live if it’s value is subsequently used

• Insight: Variables can share space when they don’t 
interfere (i.e. aren’t simultaneously live)

• We’ll capture the constraints via an abstraction 
called the interference graph
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A := … 
B := …
… := B
C := … 
… := A
D := …
… := D
… := C

Use/Definition Sequence

Line_1

Line_2

Line_3

Line_4

Line_5

Line_6

Line_7

Line_8



Liveness
Machine Code Optimization: Data Allocation

The interference graph:

• Nodes are variables

• Edges show simultaneously live variables 
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A := … 
B := …
… := B
C := … 
… := A
D := …
… := D
… := C

Use/Definition Sequence

Line_1

Line_2

Line_3

Line_4

Line_5

Line_6

Line_7

Line_8

A D

B C

Interference Graph



Liveness
Machine Code Optimization: Data Allocation

Coloring:

• Assign each storage location to a color

• Color the interference graph so no nodes of the same 
color are adjacent
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A := … 
B := …
… := B
C := … 
… := A
D := …
… := D
… := C

Use/Definition Sequence

Line_1

Line_2

Line_3

Line_4

Line_5

Line_6

Line_7

Line_8

A D

B C

Interference Graph

Loc2

Loc1

A D

B C



Liveness
Machine Code Optimization: Data Allocation

Allocation: Map all variables to their color’s location

Unfortunately, coloring is NP-Compete 
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A := … 
B := …
… := B
C := … 
… := A
D := …
… := D
… := C

A D

B C

Interference GraphUse/Definition Sequence

Loc2

Loc1

A D

B C

-24(%rbp)   := … 
-32(%rbp) := …
               … := -32(%rbp)
-32(%rbp) := … 
               … := -24(%rbp) 
-24(%rbp)   := …
              …  := -24(%rbp)
               … := -32(%rbp)

Allocation

Line_1

Line_2

Line_3

Line_4

Line_5

Line_6

Line_7

Line_8

foo AR

old RBP old RIP

%rsp %rbp 

B / C A / D

Memory at Runtime



Today’s Outline
Machine Code Optimization

Improving data allocation

• Register allocation

Improving Final Code

• Peephole optimization

• Instruction Pipelines
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Optimization



Register Allocation
Machine Code Optimization: Register Allocation

When possible, keep variables entirely in registers

Why?

• Some computation requires register operands

• Register operands are intrinsically faster

Register coloring

• Assign a color to each available register

• Optimal assignment is NP-Complete 
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Problem: Callee clobbers registers!
Machine Code Optimization: Register Allocation

17

enter foo
[f1] := 2
[f2] := 3
call bar
[f3] := [f2] + [f1] 
leave foo

enter bar
[b1] := 9
[b2] := 7
[glb_g] := [b1] - [b2]
leave foo

foo: pushq %rbp

        movq %rsp, %rbp

        addq $16, %rbp

        movq $2, %r9

        movq $3, %r10

        callq bar

        addq %r9, %r10

        popq %rbp

        retq

bar: pushq %rbp

        movq %rsp, %rbp

        addq $16, %rbp

        movq $9, %r9

        movq $7, %r10

        subq %r10, %r9

        movq %r9, (glb_g) 

        popq %rbp

        retq

bar AR
old ripold rbp

… …0x7fc0 …
old ripold rbp

foo AR
r9
r10

rsp
rbp

0x7FA0 0x7FA8 0x7FB0 0x7FB8

0x7FB0
0x7FC0

0x7FA0
2
3

2

old ripold rbp
… …

free foo AR
r9
r10

rsp
rbp

0x7FA0 0x7FA8 0x7FB0 0x7FB8

0x7FC0

0x7FC0

0x7FB0
2
3

1

free
old ripold rbp

… …

foo AR
r9
r10

rsp
rbp

0x7FA0 0x7FA8 0x7FB0 0x7FB8

0x7FC0
0x7FC0

0x7FB0
9
7

4

%r9

%r10

%r9

%r10

bar AR
old ripold rbpold ripold rbp

foo AR
r9
r10

rsp
rbp

0x7FA0 0x7FA8 0x7FB0 0x7FB8

0x7FB0
0x7FC0

0x7FA0
9
7

3

2

3

1

4



Which Registers To Use?
Machine Code Optimization: Register Allocation

Register Allocation Complication:
• Callees overwriting registers

• Callees can’t statically learn which registers the caller is using
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foo

bar

baz

Needs 2 
registers

Needs 3
registers

Needs 2
registers

%r11, %r12, %r13, %r14, %r15Assume these general purpose registers

%r11
%r12

%r11
%r12

%r13
%r14
%r15



Register Conventions
Machine Code Optimization: Register Conventions

Calling convention indicates which registers should be 
preserved across calls

• Preserved (callee-saved): rbx, rsp, rbp, r12, r13, r14, r15

• Volatile (caller-saved): rax, rdi, rsi, rdx, rcx, r8, r9, r10, r11
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Preserving Register Values
Machine Code Optimization: Register Conventions

Analogy: housesharing

20

Imagine a function call. There’s a 
caller and a callee. Let’s use an 
analogy

• Me (homeowner): caller

• You (guest): callee

Function call: you stay at my house. 
Rooms: registers

• Common rooms: you can goof 
around in there (volatile)

• Restricted rooms: don’t touch 
anything (preserved)



Preserving Register Values
Machine Code Optimization: Register Conventions

Analogy: housesharing

21

Imagine a function call. There’s a 
caller and a callee. Let’s use an 
analogy

• Me (homeowner): caller

• You (guest): callee

Function call: you stay at my house. 
Rooms: registers

• Common rooms: you can goof 
around in there (volatile)

• Restricted rooms: don’t touch 
anything (preserved)

%r08
0x12

%r09
0xFF

%r10
0x97

%r11
0x13

%r12
0xF3

%r13
0x1111
111111

volatile

preserved



Preserving Register Values
Machine Code Optimization: Register Conventions
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Respectful housesharing
In the call
- You only touch the volatile registers
After the caller
- I don’t care

%r08
0x12

%r09
0xFF

%r10
0x97

%r11
0x13

%r12
0xF3

%r13
0x1111
111111

volatile

preserved

0x32 0x19

Allowed

Caller code
movq $0x13, %r11
movq $0x12, %r08
callq
addq $1, %r11
movq $0, %r08

I can count on 
%r11’s being same

I cannot count on 
%r08’s value



Preserving Register Values
Machine Code Optimization: Register Conventions
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Respectful housesharing
In the call
- You only touch the volatile registers
After the caller
- I don’t care

%r08
0x12

%r09
0xFF

%r10
0x97

%r11
0x13

%r12
0xF3

%r13
0x1111
111111

volatile

preserved

Disrespectful housesharing
In the call
- You (also) touch the preserved registers
After the caller
- Caller’s expectation violated!!

0x32 0x19 0x88

Allowed

Illegal
(violated System V ABI)

Caller code
movq $0x13, %r11
movq $0x12, %r08
callq
addq $1, %r11
movq $0, %r08



Preserving Register Values
Machine Code Optimization: Register Conventions
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Respectful housesharing
In the call
- You only touch the volatile registers
After the caller
- I don’t care

%r08
0x12

%r09
0xFF

%r10
0x97

%r11
0x13

%r12
0xF3

%r13
0x1111
111111

volatile

preserved

Disrespectful housesharing
In the call
- You (also) touch the preserved registers
After the caller
- Caller’s expectation violated!!

0x32 0x19 0x88

0x13

Allowed

Sneaky housesharing
In the call
- You (also) touch the preserved registers
- You restore the preserved values before return
After the caller
- The caller never knows of your deviance

Illegal
(violated System V ABI)

Allowed



Implementing Register Conventions
Machine Code Optimization: Register Conventions

Using callee-saved registers

Being a “sneaky guest”

• Push the preserved 
register values before you 
use them

• Pop the stacked values 
before you return
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Prologue
pushq %rbp
movq %rsp, %rbp
addq $16, %rbp
pushq %r08
pushq %r09
subq $32, %rsp

Epilogue
addq $32, %rsp
popq %r09
popq %r08
popq %rbp
retq

Using caller-saved registers

Being a “sneaky owner”

• Save a volatile register to 
the stack

• Pop the stacked values 
before you return

Call site
pushq %r11
pushq %r12
callq fn_callee
popq %r12
popq %r11



Today’s Outline
Machine Code Optimization

Improving data allocation

• Register allocation

Improving Final Code

• Peephole optimization

• Instruction Pipelines
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Optimization



Fixing “Obviously Sub-Optimal” Code
Machine Code Optimization: Peephole Optimizations
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A code generator may output 
obviously “weak” code

• why?

– Ignoring global context 

– Correctness-first design

Solution: pattern-match the 
most obvious problems

An obvious flaw



The Idea of the Peephole
Machine Code Optimization: Peephole Optimizations

• Called “peephole” 
optimization because we 
are conceptually sliding a 
small window over the 
code, looking for small 
patterns
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Remove Semantic No-ops
Machine Code Optimization: Peephole Optimizations
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Remove semantic no-op sequences

• Push followed by pop

• Add/sub 0

• Mul/div 1

subq    $8,  %rsp

movq  %r10,  (%rsp) 

movq (%rsp), %r10

addq    $8,  %rsp

push

pop
addq $0 %rax imulq $1 %rbx



Sequence Simplification
Machine Code Optimization: Peephole Optimizations

• Store then load

• Arithmetic equivalence

• Jump to next
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movq %rax, -8(%rbp)

movq -8(%rbp) %rax

Useless instruction

addq  $1 %r11

addq  $2 %r11

Just add 3

jmp  Label1

Label1: addq $2, %rax

Useless instruction



Instruction Strength Reduction
Machine Code Optimization: Peephole Optimizations

Instruction Strength Reduction

- Prefer “weak” (narrow/specialized 
instruction) instead

- Avoid “strong” (general-purpose) 
instruction
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imulq  $2 %rax

shift-left %rax

addq  $1 %rax

inc %rax

Requires knowledge of the fast and 
slow instructions

“Weaker” is better



Peephole Optimization: Summary
Machine Code Optimization: Peephole Optimizations

Concept

• Final code “postprocessing”

• Slide a window over the program that pattern-matches suboptimal 
cases

Benefits

• Remove some consequences of naïve machine code generation

• Leverage hardware features
• Faster instructions
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Today’s Outline
Machine Code Optimization

Improving data allocation

• Register allocation

Improving Final Code

• Peephole optimization

• Instruction Pipelines
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Optimization



Background: Multi-stage Cycles
Machine Code Optimization: Delay Slots – Branch Hazards

The classic cycle of a processor:

Fetch - read value at the program counter

Decode – figure out what the instruction is

Execute – do what the instruction

Write-back – commit the results to register/memory

If we did all of this sequentially, we’d waste time & 
resources
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Background: Instruction Pipelines
Machine Code Optimization: Delay Slots – Branch Hazards

Idea: Start on next instruction before current done
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Time
t0

Time
t1

Time
t2

Time
t3

Time
t4

Time
t5

Time
t6

Time
t7

Time
t8

I1:  addq %rax %rbx

I2 : subq %rcx %rdx

I1

Fetch

I1

Decode

I1

Execute

I1

Write

I2

Fetch

I2

Decode

I2

Execute

I2

Write



Background: Instruction Pipelines
Machine Code Optimization: Delay Slots – Branch Hazards

Idea: Start on next instruction before current done
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Instr
Fetch

Instr
Decode

Execute

Writeback

Time
t0

Time
t1

Time
t2

Time
t3

Time
t4

Time
t5

Time
t6

Time
t7

Time
t8

I1:  addq %rax %rbx

I2 : subq %rcx %rdx

I1

Fetch

I1

Decode

I1

Execute

I1

Write

I2

Fetch

I2

Decode

I2

Execute

I2

Write



Background: Instruction Pipelines
Machine Code Optimization: Delay Slots – Branch Hazards

Idea: Start on next instruction before current done

37

Instr
Fetch

Instr
Decode

Execute

Writeback

Time
t0

Time
t1

Time
t2

Time
t3

Time
t4

Time
t5

Time
t6

Time
t7

Time
t8

I1:  addq %rax %rbx

I2 : subq %rcx %rdx

I1

I1

I1

I1

I2

I2

I2

I2

addq %rax, %rbx

addq %rbx, %rcx

addq %rdx, %r11

addq %rax, %rbx

addq %rbx, %rcx

addq %rdx, %r11



Lecture End!
Machine Code Optimization: Wrap-Up

Summary:

Be careful about which instructions you use

• Selection: the choice of instructions in output

• Scheduling: the order of instructions in output

Next Time:

• Optimizing program structure

38
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