
Checkin 32

1

Virtual memory simplifies the task of the loader. What extra steps does
the loader need to take without virtual memory?

Machine Code
Optimization

University of Kansas| Drew Davidson

2

Previously
Post-compilation toolchain

Compiler Toolchains

• Overview

• What GCC Does

Component Walkthrough

• Assembler

• Linker

• Loader

3

4

COMPILER

Regular
Languages

Syntactic
Definition

Lexical
Analysis

Parsing
Syntax-Dir
Translation

Optimization

Semantic
Analysis

Machine
Codegen

Intermediate
Representation

Code
Generation

Postcompilation
Pit-stop

Compiler Construction
Progress Pics

5

Scanner
Lexical analysis

Parser
Syntactic analysis

Semantic analysis

Intermediate code
generation

IR optimization

Final Code
generation

Final code
optimization

Source
Code Finished

• A naïve workflow from source
code to target code

To-Do

• Clean up some of the corners we
cut

We’ve focused on correctness over
efficiency, let’s try to win back
some efficiency

Today’s Outline
Machine Code Optimization

Overview

Improving data allocation

• Register allocation

Improving Final Code

• Peephole optimization

• Instruction Pipelines

6

Optimization

Working With the Architecture
Machine Code Optimization

Good machine code should:

• Play to the strengths of the hardware

• Compensate for weaknesses of the hardware

Such operations depend on specifics of the architecture

7

Disclaimer: This is a Deep Area
Machine Code Optimization

We hardly scratch the surface of compiler optimizations

• There are more categories of machine-code optimization
than we’ll cover

• There are more optimizations within the categories we do
cover

8

The tip of the iceberg

Today’s Outline
Machine Code Optimization

Overview

Improving data allocation

• Register allocation

Improving Final Code

• Peephole optimization

• Instruction Pipelines

9

Optimization

Sizing Activation Records
Machine Code Optimization: Data Allocation

Easy mode: one AR slot for every temp, local, and arg

10

Source code
int foo(int a){

 int v;

 int r;

 v = a-a*a;

 r = v - 2;

}

3AC Code
enter foo

getarg 1, [a]

[t1] := [a] * [a]

[v] := [a] - [t1]

[r] := [v] - 2
foo AR

old RBP old RIP

%rsp %rbp

int r int t1 int v int a

Memory at Runtime

Surely one could use fewer memory slots!

Maybe we could
share some slots

Liveness
Machine Code Optimization: Data Allocation

• A definition is live if it’s value is subsequently used

• Insight: Variables can share space when they don’t
interfere (i.e. aren’t simultaneously live)

• We’ll capture the constraints via an abstraction
called the interference graph

11

A := …
B := …
… := B
C := …
… := A
D := …
… := D
… := C

Use/Definition Sequence

Line_1

Line_2

Line_3

Line_4

Line_5

Line_6

Line_7

Line_8

Liveness
Machine Code Optimization: Data Allocation

The interference graph:

• Nodes are variables

• Edges show simultaneously live variables

12

A := …
B := …
… := B
C := …
… := A
D := …
… := D
… := C

Use/Definition Sequence

Line_1

Line_2

Line_3

Line_4

Line_5

Line_6

Line_7

Line_8

A D

B C

Interference Graph

Liveness
Machine Code Optimization: Data Allocation

Coloring:

• Assign each storage location to a color

• Color the interference graph so no nodes of the same
color are adjacent

13

A := …
B := …
… := B
C := …
… := A
D := …
… := D
… := C

Use/Definition Sequence

Line_1

Line_2

Line_3

Line_4

Line_5

Line_6

Line_7

Line_8

A D

B C

Interference Graph

Loc2

Loc1

A D

B C

Liveness
Machine Code Optimization: Data Allocation

Allocation: Map all variables to their color’s location

Unfortunately, coloring is NP-Compete 

14

A := …
B := …
… := B
C := …
… := A
D := …
… := D
… := C

A D

B C

Interference GraphUse/Definition Sequence

Loc2

Loc1

A D

B C

-24(%rbp) := …
-32(%rbp) := …
 … := -32(%rbp)
-32(%rbp) := …
 … := -24(%rbp)
-24(%rbp) := …
 … := -24(%rbp)
 … := -32(%rbp)

Allocation

Line_1

Line_2

Line_3

Line_4

Line_5

Line_6

Line_7

Line_8

foo AR

old RBP old RIP

%rsp %rbp

B / C A / D

Memory at Runtime

Today’s Outline
Machine Code Optimization

Improving data allocation

• Register allocation

Improving Final Code

• Peephole optimization

• Instruction Pipelines

15

Optimization

Register Allocation
Machine Code Optimization: Register Allocation

When possible, keep variables entirely in registers

Why?

• Some computation requires register operands

• Register operands are intrinsically faster

Register coloring

• Assign a color to each available register

• Optimal assignment is NP-Complete 

16

Problem: Callee clobbers registers!
Machine Code Optimization: Register Allocation

17

enter foo
[f1] := 2
[f2] := 3
call bar
[f3] := [f2] + [f1]
leave foo

enter bar
[b1] := 9
[b2] := 7
[glb_g] := [b1] - [b2]
leave foo

foo: pushq %rbp

 movq %rsp, %rbp

 addq $16, %rbp

 movq $2, %r9

 movq $3, %r10

 callq bar

 addq %r9, %r10

 popq %rbp

 retq

bar: pushq %rbp

 movq %rsp, %rbp

 addq $16, %rbp

 movq $9, %r9

 movq $7, %r10

 subq %r10, %r9

 movq %r9, (glb_g)

 popq %rbp

 retq

bar AR
old ripold rbp

… …0x7fc0 …
old ripold rbp

foo AR
r9
r10

rsp
rbp

0x7FA0 0x7FA8 0x7FB0 0x7FB8

0x7FB0
0x7FC0

0x7FA0
2
3

2

old ripold rbp
… …

free foo AR
r9
r10

rsp
rbp

0x7FA0 0x7FA8 0x7FB0 0x7FB8

0x7FC0

0x7FC0

0x7FB0
2
3

1

free
old ripold rbp

… …

foo AR
r9
r10

rsp
rbp

0x7FA0 0x7FA8 0x7FB0 0x7FB8

0x7FC0
0x7FC0

0x7FB0
9
7

4

%r9

%r10

%r9

%r10

bar AR
old ripold rbpold ripold rbp

foo AR
r9
r10

rsp
rbp

0x7FA0 0x7FA8 0x7FB0 0x7FB8

0x7FB0
0x7FC0

0x7FA0
9
7

3

2

3

1

4

Which Registers To Use?
Machine Code Optimization: Register Allocation

Register Allocation Complication:
• Callees overwriting registers

• Callees can’t statically learn which registers the caller is using

18

foo

bar

baz

Needs 2
registers

Needs 3
registers

Needs 2
registers

%r11, %r12, %r13, %r14, %r15Assume these general purpose registers

%r11
%r12

%r11
%r12

%r13
%r14
%r15

Register Conventions
Machine Code Optimization: Register Conventions

Calling convention indicates which registers should be
preserved across calls

• Preserved (callee-saved): rbx, rsp, rbp, r12, r13, r14, r15

• Volatile (caller-saved): rax, rdi, rsi, rdx, rcx, r8, r9, r10, r11

19

Preserving Register Values
Machine Code Optimization: Register Conventions

Analogy: housesharing

20

Imagine a function call. There’s a
caller and a callee. Let’s use an
analogy

• Me (homeowner): caller

• You (guest): callee

Function call: you stay at my house.
Rooms: registers

• Common rooms: you can goof
around in there (volatile)

• Restricted rooms: don’t touch
anything (preserved)

Preserving Register Values
Machine Code Optimization: Register Conventions

Analogy: housesharing

21

Imagine a function call. There’s a
caller and a callee. Let’s use an
analogy

• Me (homeowner): caller

• You (guest): callee

Function call: you stay at my house.
Rooms: registers

• Common rooms: you can goof
around in there (volatile)

• Restricted rooms: don’t touch
anything (preserved)

%r08
0x12

%r09
0xFF

%r10
0x97

%r11
0x13

%r12
0xF3

%r13
0x1111
111111

volatile

preserved

Preserving Register Values
Machine Code Optimization: Register Conventions

22

Respectful housesharing
In the call
- You only touch the volatile registers
After the caller
- I don’t care

%r08
0x12

%r09
0xFF

%r10
0x97

%r11
0x13

%r12
0xF3

%r13
0x1111
111111

volatile

preserved

0x32 0x19

Allowed

Caller code
movq $0x13, %r11
movq $0x12, %r08
callq
addq $1, %r11
movq $0, %r08

I can count on
%r11’s being same

I cannot count on
%r08’s value

Preserving Register Values
Machine Code Optimization: Register Conventions

23

Respectful housesharing
In the call
- You only touch the volatile registers
After the caller
- I don’t care

%r08
0x12

%r09
0xFF

%r10
0x97

%r11
0x13

%r12
0xF3

%r13
0x1111
111111

volatile

preserved

Disrespectful housesharing
In the call
- You (also) touch the preserved registers
After the caller
- Caller’s expectation violated!!

0x32 0x19 0x88

Allowed

Illegal
(violated System V ABI)

Caller code
movq $0x13, %r11
movq $0x12, %r08
callq
addq $1, %r11
movq $0, %r08

Preserving Register Values
Machine Code Optimization: Register Conventions

24

Respectful housesharing
In the call
- You only touch the volatile registers
After the caller
- I don’t care

%r08
0x12

%r09
0xFF

%r10
0x97

%r11
0x13

%r12
0xF3

%r13
0x1111
111111

volatile

preserved

Disrespectful housesharing
In the call
- You (also) touch the preserved registers
After the caller
- Caller’s expectation violated!!

0x32 0x19 0x88

0x13

Allowed

Sneaky housesharing
In the call
- You (also) touch the preserved registers
- You restore the preserved values before return
After the caller
- The caller never knows of your deviance

Illegal
(violated System V ABI)

Allowed

Implementing Register Conventions
Machine Code Optimization: Register Conventions

Using callee-saved registers

Being a “sneaky guest”

• Push the preserved
register values before you
use them

• Pop the stacked values
before you return

25

Prologue
pushq %rbp
movq %rsp, %rbp
addq $16, %rbp
pushq %r08
pushq %r09
subq $32, %rsp

Epilogue
addq $32, %rsp
popq %r09
popq %r08
popq %rbp
retq

Using caller-saved registers

Being a “sneaky owner”

• Save a volatile register to
the stack

• Pop the stacked values
before you return

Call site
pushq %r11
pushq %r12
callq fn_callee
popq %r12
popq %r11

Today’s Outline
Machine Code Optimization

Improving data allocation

• Register allocation

Improving Final Code

• Peephole optimization

• Instruction Pipelines

26

Optimization

Fixing “Obviously Sub-Optimal” Code
Machine Code Optimization: Peephole Optimizations

27

A code generator may output
obviously “weak” code

• why?

– Ignoring global context

– Correctness-first design

Solution: pattern-match the
most obvious problems

An obvious flaw

The Idea of the Peephole
Machine Code Optimization: Peephole Optimizations

• Called “peephole”
optimization because we
are conceptually sliding a
small window over the
code, looking for small
patterns

28

Remove Semantic No-ops
Machine Code Optimization: Peephole Optimizations

29

Remove semantic no-op sequences

• Push followed by pop

• Add/sub 0

• Mul/div 1

subq $8, %rsp

movq %r10, (%rsp)

movq (%rsp), %r10

addq $8, %rsp

push

pop
addq $0 %rax imulq $1 %rbx

Sequence Simplification
Machine Code Optimization: Peephole Optimizations

• Store then load

• Arithmetic equivalence

• Jump to next

30

movq %rax, -8(%rbp)

movq -8(%rbp) %rax

Useless instruction

addq $1 %r11

addq $2 %r11

Just add 3

jmp Label1

Label1: addq $2, %rax

Useless instruction

Instruction Strength Reduction
Machine Code Optimization: Peephole Optimizations

Instruction Strength Reduction

- Prefer “weak” (narrow/specialized
instruction) instead

- Avoid “strong” (general-purpose)
instruction

31

imulq $2 %rax

shift-left %rax

addq $1 %rax

inc %rax

Requires knowledge of the fast and
slow instructions

“Weaker” is better

Peephole Optimization: Summary
Machine Code Optimization: Peephole Optimizations

Concept

• Final code “postprocessing”

• Slide a window over the program that pattern-matches suboptimal
cases

Benefits

• Remove some consequences of naïve machine code generation

• Leverage hardware features
• Faster instructions

32

Today’s Outline
Machine Code Optimization

Improving data allocation

• Register allocation

Improving Final Code

• Peephole optimization

• Instruction Pipelines

33

Optimization

Background: Multi-stage Cycles
Machine Code Optimization: Delay Slots – Branch Hazards

The classic cycle of a processor:

Fetch - read value at the program counter

Decode – figure out what the instruction is

Execute – do what the instruction

Write-back – commit the results to register/memory

If we did all of this sequentially, we’d waste time &
resources

34

Background: Instruction Pipelines
Machine Code Optimization: Delay Slots – Branch Hazards

Idea: Start on next instruction before current done

35

Time
t0

Time
t1

Time
t2

Time
t3

Time
t4

Time
t5

Time
t6

Time
t7

Time
t8

I1: addq %rax %rbx

I2 : subq %rcx %rdx

I1

Fetch

I1

Decode

I1

Execute

I1

Write

I2

Fetch

I2

Decode

I2

Execute

I2

Write

Background: Instruction Pipelines
Machine Code Optimization: Delay Slots – Branch Hazards

Idea: Start on next instruction before current done

36

Instr
Fetch

Instr
Decode

Execute

Writeback

Time
t0

Time
t1

Time
t2

Time
t3

Time
t4

Time
t5

Time
t6

Time
t7

Time
t8

I1: addq %rax %rbx

I2 : subq %rcx %rdx

I1

Fetch

I1

Decode

I1

Execute

I1

Write

I2

Fetch

I2

Decode

I2

Execute

I2

Write

Background: Instruction Pipelines
Machine Code Optimization: Delay Slots – Branch Hazards

Idea: Start on next instruction before current done

37

Instr
Fetch

Instr
Decode

Execute

Writeback

Time
t0

Time
t1

Time
t2

Time
t3

Time
t4

Time
t5

Time
t6

Time
t7

Time
t8

I1: addq %rax %rbx

I2 : subq %rcx %rdx

I1

I1

I1

I1

I2

I2

I2

I2

addq %rax, %rbx

addq %rbx, %rcx

addq %rdx, %r11

addq %rax, %rbx

addq %rbx, %rcx

addq %rdx, %r11

Lecture End!
Machine Code Optimization: Wrap-Up

Summary:

Be careful about which instructions you use

• Selection: the choice of instructions in output

• Scheduling: the order of instructions in output

Next Time:

• Optimizing program structure

38

	Slide 1: Checkin 32
	Slide 2: Machine Code Optimization
	Slide 3: Previously Post-compilation toolchain
	Slide 4
	Slide 5: Compiler Construction Progress Pics
	Slide 6: Today’s Outline Machine Code Optimization
	Slide 7: Working With the Architecture Machine Code Optimization
	Slide 8: Disclaimer: This is a Deep Area Machine Code Optimization
	Slide 9: Today’s Outline Machine Code Optimization
	Slide 10: Sizing Activation Records Machine Code Optimization: Data Allocation
	Slide 11: Liveness Machine Code Optimization: Data Allocation
	Slide 12: Liveness Machine Code Optimization: Data Allocation
	Slide 13: Liveness Machine Code Optimization: Data Allocation
	Slide 14: Liveness Machine Code Optimization: Data Allocation
	Slide 15: Today’s Outline Machine Code Optimization
	Slide 16: Register Allocation Machine Code Optimization: Register Allocation
	Slide 17: Problem: Callee clobbers registers! Machine Code Optimization: Register Allocation
	Slide 18: Which Registers To Use? Machine Code Optimization: Register Allocation
	Slide 19: Register Conventions Machine Code Optimization: Register Conventions
	Slide 20: Preserving Register Values Machine Code Optimization: Register Conventions
	Slide 21: Preserving Register Values Machine Code Optimization: Register Conventions
	Slide 22: Preserving Register Values Machine Code Optimization: Register Conventions
	Slide 23: Preserving Register Values Machine Code Optimization: Register Conventions
	Slide 24: Preserving Register Values Machine Code Optimization: Register Conventions
	Slide 25: Implementing Register Conventions Machine Code Optimization: Register Conventions
	Slide 26: Today’s Outline Machine Code Optimization
	Slide 27: Fixing “Obviously Sub-Optimal” Code Machine Code Optimization: Peephole Optimizations
	Slide 28: The Idea of the Peephole Machine Code Optimization: Peephole Optimizations
	Slide 29: Remove Semantic No-ops Machine Code Optimization: Peephole Optimizations
	Slide 30: Sequence Simplification Machine Code Optimization: Peephole Optimizations
	Slide 31: Instruction Strength Reduction Machine Code Optimization: Peephole Optimizations
	Slide 32: Peephole Optimization: Summary Machine Code Optimization: Peephole Optimizations
	Slide 33: Today’s Outline Machine Code Optimization
	Slide 34: Background: Multi-stage Cycles Machine Code Optimization: Delay Slots – Branch Hazards
	Slide 35: Background: Instruction Pipelines Machine Code Optimization: Delay Slots – Branch Hazards
	Slide 36: Background: Instruction Pipelines Machine Code Optimization: Delay Slots – Branch Hazards
	Slide 37: Background: Instruction Pipelines Machine Code Optimization: Delay Slots – Branch Hazards
	Slide 38: Lecture End! Machine Code Optimization: Wrap-Up

