Checkin 32

Virtual memory simplifies the task of the loader. What extra steps does
the loader need to take without virtual memory?

S Uhiversity of Kansasl Drei Davidson

i . -
\
"-’

O H" ! !ﬁv-— &

CONSTRUCTION

A—achine Code
Optimization

Previously

Post-compilation toolchain

Compiler Toolchains

* Overview

* What GCC Does
Component Walkthrough
* Assembler

* Linker

* Loader

Postcompilation ,') ,r:.;',qm,

pit-stop [0 = COMPILER s 1)

‘-
ACS v

-l‘u W W

Yute ﬂm..'l St
L LR A

Semantic
Analysis

[

l“va
Lo #OP wheey
AN O T

. Regular ;;-
/ Languagesy
":-".. ./‘ Fe '.‘ i . . /
at <V e f
- - % 4 '9/

Lexical
Analysis

Compiler Construction

Progress Pics

o \ Finished

v .
Scanner) * A naive workflow from source

Lexical analysis |

code to target code

Parser
: Syntactiianalysis : TO-DO
Semantic analysis
) : - * Clean up some of the corners we
Intermediate code
L generation) CUt
v
IR optimization
2 + 2!
Final Code We’ve focused on correctness over
L efficiency, let’s try to win back

optimization) some EffICIency

Today’s Outline

Machine Code Optimization

Overview

Improving data allocation
* Register allocation
Improving Final Code

* Peephole optimization

* Instruction Pipelines

Optimization

Working With the Architecture

Machine Code Optimization

Good machine code should:

* Play to the strengths of the hardware

 Compensate for weaknesses of the hardware

Such operations depend on specifics of the architecture

Disclaimer: This is a Deep Area

Machine Code Optimization

We hardly scratch the surface of compiler optimizations

* There are more categories of machine-code optimization
than we’ll cover

* There are more optimizations within the categories we do
cover

The tip of the iceberg

Today’s Outline

Machine Code Optimization

Overview

Improving data allocation
* Register allocation

Improving Final Code
* Peephole optimization
* Instruction Pipelines

Optimization

Sizing Activation Records

Machine Code Optimization: Data Allocation

Easy mode: one AR slot for every temp, local, and arg

Source code 3AC Code Memory at Runtime

int foo(int a) { enter foo %rsp %rbp
int v; getarg 1, [a]
int r; [t1] := [a] * [a] J \ J
v = a-a*a; [v] := [a] - [tl] Lint ridint t14 int vH int aHold RBPY old RIP/
r=v - 2; [r] = [v] - 2

) foo AR

Surely one could use fewer memory slots!

Maybe we could
share some slots

10

Liveness

Machine Code Optimization: Data Allocation

* A definition is live if it’s value is subsequently used

* Insight: Variables can share space when they don’t
interfere (i.e. aren’t simultaneously live)

e We’ll capture the constraints via an abstraction
called the interference graph

Use/Definition Sequence

Line_1
Line_2
Line_3
Line_4
Line_5
Line_6
Line_7
Line_8

(o @é

4

The interference graph:

Liveness

Machine Code Optimization: Data Allocation

* Nodes are variables

* Edges show simultaneously live variables

Use/Definition Sequence

Line_1
Line_2
Line_3
Line_4
Line_5
Line_6
Line_7
Line_8

=)
i

);

4

Interference Graph

12

Liveness

Machine Code Optimization: Data Allocation

Coloring:
* Assign each storage location to a color

* Color the interference graph so no nodes of the same
color are adjacent

Use/Definition Sequence Interference Graph

Line_1
Line_2
Line_3
Line_4
Line_5
Line_6
Line_7
Line_8

=)
i

);

4

Liveness

Machine Code Optimization: Data Allocation

Allocation: Map all variables to their color’s location

Memory at Runtime

%rsp

%rbp

-B/CJA/D-ddRN’ddRW'

foo AR

Unfortunately, coloring is NP-Compete ®

Use/Definition Sequence

Line_1
Line_2
Line_3
Line_4
Line 5
Line_6
Line_7
Line_8

Interference Graph

Locl

Allocation
-24(%rbp) =
-32(%rbp) := ...

... :=-32(%rbp)
-32(%rbp) :=
= —24(%rbp)
-24(%rbp)
—24(%rbp)

:=-32(%rbp)

14

Today’s Outline

Machine Code Optimization

Improving data allocation

[* Register allocation }

Improving Final Code
* Peephole optimization
* Instruction Pipelines

Optimization

15

Register Allocation

Machine Code Optimization: Register Allocation

When possible, keep variables entirely in registers
Why?

 Some computation requires register operands

* Register operands are intrinsically faster

Register coloring

* Assign a color to each available register

* Optimal assighment is NP-Complete ®

Problem: Callee clobbers registers!

enter foo
[f1]:=2
[f2] :=3
call bar

[f3] := [f2] + [f1]

leave foo

enter bar
[b1] :=9
[b2]/:=7

[glb_g] := [b1] - [b2]

leave foo

foo:

pushq %rbp
movq %rsp, %rbp
addq S16, %rbp
movq $2, %r9
movq $3, %r10

o'>callq bar

e'>addq %r9, %r10

popg %rbp
retq

bar: pushqg %rbp
movq %rsp, %rbp

a

ddq $16, %rbp

9 movq $9, %r9
movq $7, %r10
subqg %r10, %r9

(3 g

movg %r9, (glb_g)
popq %rbp

retq

Machine Code Optimization: Register Allocation

Ox7FAO0 Ox7FA8 0x7FBO Ox7FB8 0x7FCO

rbp 0x7FCO
rsp Ox7FBO
old rbp|old rip r9p 2X
free foo AR r10 3

|

0x7FAO Ox7FA8 Ox7FBO Ox7FB8 0x7FCO

rbp Ox7FCO
old rbp| old rip rsp. Ox7FBO
r9 9
free foo AR r10 7

Ox7FA0 Ox7FA8 Ox7FBO 0x7FB8 0x7FCO

0x7fcO rbp 8)(;:;28
old rbp|old rip|old rbp|old rip :;p 2X
bar AR foo AR 10 3

\

Ox7FA0 Ox7FA8 Ox7FBO 0x7FB8 0x7FCO

old rbp

old rip

old rbp

old rip

bar

AR

foo

AR

rbp Ox7FBO
rsp Ox7FAQ
r9 9

r10 7

) 17

Which Registers To Use?

Machine Code Optimization: Register Allocation

Register Allocation Complication:
* Callees overwriting registers

* Callees can’t statically learn which registers the caller is using

Assume these general purpose registers %rl1, %r12, %r13, %r14, %rl15

Needs 2 %rll
registers %rl2

Needs 2 %rll
registers %r12

(o)
Needs 3 sorl3

registers srla
& %r15

Register Conventions

Machine Code Optimization: Register Conventions

Calling convention indicates which registers should be
preserved across calls

* Preserved (callee-saved): rbx, rsp, rbp, r12,r13, r14, r15

 Volatile (caller-saved): rax, rdi, rsi, rdx, rcx, r8, r9, r10, r11

Preserving Register Values

Machine Code Optimization: Register Conventions

Analogy: housesharing

@ Vrdror

airbnb

Imagine a function call. There’s a
caller and a callee. Let’s use an
analogy

 Me (homeowner): caller
* You (guest): callee
Function call: you stay at my house.

20

Preserving Register Values

Machine Code Optimization: Register Conventions

Analogy: housesharing

I i %r08

0Ox12

. Kitchen / Dining
: 187 sq ft :

| %r12

F3

Closet I;.\ { T

Bedroom 2
122sqft

%rl3
| Ox1111
1111111

preserved

Imagine a function call. There’s a
caller and a callee. Let’s use an
analogy

 Me (homeowner): caller
* You (guest): callee

Function call: you stay at my house.
Rooms: registers

e Common rooms: you can goof
around in there (volatile)

e Restricted rooms: don’t touch
anything (preserved)

21

Preserving Register Values

Machine Code Optimization: Register Conventions

) Respectful housesharing
| vqlatl!e

S In the call
| o%ro8 %r09 | %r11 | - You only touch the volatile registers Allowed
, 0x13 . After the caller
.] M F)
2 _0x1 -1 don’t care
| can count on
%r11’s being same
! iETS Caller code | cannot count on
;%’1?131 movq S0x13, %r11 %r08'’s value
1 e movq $0x12, %r08

callg
preserved , [addq $1, %rl1l]

movq S0, %r08

22

Preserving Register Values

Machine Code Optimization: Register Conventions

) Respectful housesharing
| vqlatl!e

= In the call
¥ .08 %r09 L ogr11 | -A:c(toeur i)}:\(leyc';ciluecrh the volatile registers Allowed
| o5 | F O | m
/ 2 0x1 8 -1 don’t care

Kitchen / Dining L Bedroom 1

Disrespectful housesharing
In the call

- You (also) touch the preserved registers
T After the caller

| %ri3 - Caller’s expectation violated!!
1 ox1111

lllegal
(violated System V ABI)

1111111 Caller code
movq S0x13, %ril1
preserved ' movq S0x12, %r08
callq

[addq $1, %r11 |
movq S0, %r08

23

Preserving Register Values

Machine Code Optimization: Register Conventions

== } = F
I% %r08
4 Ot2
/ 2

- Kitchen / Dining
. 187 sq ft
T

4
Al
-

!

|

Bedroom 2
122sqft

| %r13
1l ox1111
{ 111111

preserved

Respectful housesharing

In the call

- You only touch the volatile registers Allowed
After the caller

-l don’t care

Disrespectful housesharing
In the call
- You (also) touch the preserved registers lllegal

After the caller _ _ (violated System V ABI)
- Caller’s expectation violated!!

Sneaky housesharing

In the call

- You (also) touch the preserved registers

- You restore the preserved values before return
After the caller

- The caller never knows of your deviance

Allowed

24

Implementing Register Conventions

Machine Code Optimization: Register Conventions

Using callee-saved registers Using caller-saved registers
Being a “sneaky guest” Being a “sneaky owner”
* Push the preserved e Save a volatile register to
register values before you the stack
use them

* Pop the stacked values
* Pop the stacked values before you return
before you return

Prologue Epilogue Call site
pushq %rbp addq $32, %rsp
movq %rsp, %rbp
addq $16, %rbp callg fn_callee
popq %rbp
retq

subq $32, %rsp

Today’s Outline

Machine Code Optimization

Improving data allocation
* Register allocation
Improving Final Code

[- Peephole optimization }

* Instruction Pipelines

Optimization

26

Fixing “Obviously Sub-Optimal” Code

Machine Code Optimization: Peephole Optimizations

A code generator may output
obviously “weak” code
* why?

— Ignoring global context

— Correctness-first design

Solution: pattern-match the
most obvious problems

An obvious flaw

27

The ldea of the Peephole

Machine Code Optimization: Peephole Optimizations

 Called “peephole”
optimization because we
are conceptually sliding a
small window over the
code, looking for small
patterns

28

Remove semantic no-op sequences

Remove Semantic No-ops

Machine Code Optimization: Peephole Optimizations

* Push followed by pop
e Add/sub O
e Mul/div 1
| subg $8, S$rsp
pUSh . movg %rl0, (3rsp) . , .
- movg (%rsp), $rl0 addg $0 %rax imulg $1 %rbx
pop -_ addg $8, Srsp

29

Sequence Simplification

Machine Code Optimization: Peephole Optimizations

Useless instruction

e Store then load
movqg Srax, -8 (5rbp)
movqg -8 (%rbp) S%Srax

Just add 3

e Arithmetic equivalence

addg $1 %ril
addg $2 srll

° Jump to next Useless instruction

<:§;;/)Labell

Labell: addg $2, %rax

Instruction Strength Reduction

Machine Code Optimization: Peephole Optimizations

Instruction Strength Reduction

- Prefer “weak” (narrow/specialized
instruction) instead

- Avoid “strong” (general-purpose)
instruction

imulg $2 %rax ‘D addg $1 Srax j
shift-left %rax inc %rax

Requires knowledge of the fast and “Weaker” is better
slow instructions

31

Peephole Optimization: Summary

Machine Code Optimization: Peephole Optimizations

Concept
* Final code “postprocessing”

* Slide a window over the program that pattern-matches suboptimal
cases

Benefits
* Remove some consequences of naive machine code generation

* Leverage hardware features
* Faster instructions

Today’s Outline

Machine Code Optimization

Improving data allocation
* Register allocation
Improving Final Code

* Peephole optimization

[* Instruction Pipelines]

Optimization

33

Background: Multi-stage Cycles

Machine Code Optimization: Delay Slots — Branch Hazards

The classic cycle of a processor:

Fetch - read value at the program counter

Decode — figure out what the instruction is

Execute — do what the instruction

Write-back — commit the results to register/memory

If we did all of this sequentially, we’d waste time &
resources

Background: Instruction Pipelines

Machine Code Optimization: Delay Slots — Branch Hazards

Idea: Start on next instruction before current done

11: addq Yorax Yorbx
I, : subq %rcx Yordx

Time Time Time Time Time Time Time Time Time

. Fetch Decode | Execute: Write | Fetch | Decode! pxecutel Write |

35

Background: Instruction Pipelines

Machine Code Optimization: Delay Slots — Branch Hazards

Idea: Start on next instruction before current done

I,: addq %rax %rbx
I, : subq Yrcx %ordx

Time Time Time Time Time Time Time Time Time

Instr (IS PR | | AN PO

: 1 : : : : 29
rerch [A N B B o
CRewh o Feh
Instr BN VI | 3 BT
pecoc- [HNREUHVI U =

Decode 5 5 Decodei

Execute [§ | L | § O
e e N e e L
EExecuteE Executeé

Writeback E i i i i
' L s s L

Write Write 36

Background: Instruction Pipelines

Machine Code Optimization: Delay Slots — Branch Hazards

Idea: Start on next instruction before current done

I,: addq %rax %rbx
I, : subq Yrcx %ordx

Time Time Time Time
ts ts t K addg %rax, S%rbx

addg %rbx, %rcx
addg %srdx, Srll

Time Time Time Time Time

Instr | , L

Instr E E I, E I,
Decode [! !
Execute ; | | I, I, addg %rax, S%Srbx
| | | addg %$rdx, %rll
i ; : : , addg %rbx, %rcx
Writeback [i i : : 1
5 5 b2

37

Lecture End!

Machine Code Optimization: Wrap-Up

Summary:

Be careful about which instructions you use
 Selection: the choice of instructions in output
e Scheduling: the order of instructions in output
Next Time:

* Optimizing program structure

	Slide 1: Checkin 32
	Slide 2: Machine Code Optimization
	Slide 3: Previously Post-compilation toolchain
	Slide 4
	Slide 5: Compiler Construction Progress Pics
	Slide 6: Today’s Outline Machine Code Optimization
	Slide 7: Working With the Architecture Machine Code Optimization
	Slide 8: Disclaimer: This is a Deep Area Machine Code Optimization
	Slide 9: Today’s Outline Machine Code Optimization
	Slide 10: Sizing Activation Records Machine Code Optimization: Data Allocation
	Slide 11: Liveness Machine Code Optimization: Data Allocation
	Slide 12: Liveness Machine Code Optimization: Data Allocation
	Slide 13: Liveness Machine Code Optimization: Data Allocation
	Slide 14: Liveness Machine Code Optimization: Data Allocation
	Slide 15: Today’s Outline Machine Code Optimization
	Slide 16: Register Allocation Machine Code Optimization: Register Allocation
	Slide 17: Problem: Callee clobbers registers! Machine Code Optimization: Register Allocation
	Slide 18: Which Registers To Use? Machine Code Optimization: Register Allocation
	Slide 19: Register Conventions Machine Code Optimization: Register Conventions
	Slide 20: Preserving Register Values Machine Code Optimization: Register Conventions
	Slide 21: Preserving Register Values Machine Code Optimization: Register Conventions
	Slide 22: Preserving Register Values Machine Code Optimization: Register Conventions
	Slide 23: Preserving Register Values Machine Code Optimization: Register Conventions
	Slide 24: Preserving Register Values Machine Code Optimization: Register Conventions
	Slide 25: Implementing Register Conventions Machine Code Optimization: Register Conventions
	Slide 26: Today’s Outline Machine Code Optimization
	Slide 27: Fixing “Obviously Sub-Optimal” Code Machine Code Optimization: Peephole Optimizations
	Slide 28: The Idea of the Peephole Machine Code Optimization: Peephole Optimizations
	Slide 29: Remove Semantic No-ops Machine Code Optimization: Peephole Optimizations
	Slide 30: Sequence Simplification Machine Code Optimization: Peephole Optimizations
	Slide 31: Instruction Strength Reduction Machine Code Optimization: Peephole Optimizations
	Slide 32: Peephole Optimization: Summary Machine Code Optimization: Peephole Optimizations
	Slide 33: Today’s Outline Machine Code Optimization
	Slide 34: Background: Multi-stage Cycles Machine Code Optimization: Delay Slots – Branch Hazards
	Slide 35: Background: Instruction Pipelines Machine Code Optimization: Delay Slots – Branch Hazards
	Slide 36: Background: Instruction Pipelines Machine Code Optimization: Delay Slots – Branch Hazards
	Slide 37: Background: Instruction Pipelines Machine Code Optimization: Delay Slots – Branch Hazards
	Slide 38: Lecture End! Machine Code Optimization: Wrap-Up

