Check-in 30

Review — Other Codegen

Translate the following to x64
int main () {

int8 t a;

int8 t b;

return a + -b;

Check-in 30 Solution

Review — Other Codegen

Announcements

Administrivia

Quiz 3 Friday
* Review session TONIGHT at 7:00 (LEEP2ZHZH

\/ f/lﬁélp
-])L\f”\
vyl
~ ol

RS0, vy n'nnﬁr-;]

_ CONSTRUCTION

—7

Heap Vianagement

Previously...

Other Code Generation

Other constructs

e Shorter primitive types
* Arrays

* Pointers

* Strings

* Structs

-

_

You Should Know
How to compile programs with strings
How to compile programs with arrays
The general idea behind pointers and
shorter primitive types

~

/

Machine Codegen

Today’s Outline

Heap Management

Heap Memory

* Using the heap

* OS interface
Garbage collection

* Reference Counting
* Mark and Sweep

Machine Codegen

The Stack “Budget”

Heap Management — Heap Memory

Fixed overall budget, managed internally
(On Linux):

stack
“budget”
remaining

__

* The stack segment is actually pretty small (10 MB)!

When the Stack isn’t enough

Heap Management — Heap Memory

Stack memory is efficient
but constrained

 (De)Allocation is easy (just
move the stack ptr)

* Object lifetime is at most
the lifetime of the
activation record

* This is a significant
limitation!

Don’t Forget the Heap!

Heap Management — Heap Memory

e Memory snapshot ™
+0x20 + 0x40 + 0x60,0x61 ; 0x62 + Oxc8 + Oxd0 + 0xd8 ¢ Oxe0
0 0 0x123 |0x48:0x69: 0x0
...|movq $1 %rax]| ... |...|subqg $8, %rsp|... intg L char st obj1 IocaIstaved rbpl saved ripJ
L rip Lrsp Yrbp
L — tn 1 code —I— n 2 code — L fnlAR —— |
I codesegment % globaldata & heap 1 free | stack |
e J

Expressi V@n@ss/ Efficiency Lim

Heap Management

1int [200] getArrayOfbs () {
1int[200] res;

for (int 1 = 0 ; i < 200 ; i++){
res[i] = 5;

}

return res;

}

main () {

1int[200] fives = getArrayOfbs();

itations

10

=

The Heap: Basic Idea

Heap Management

Disassociate memory region from ARs

e Memory snapshot ™
g J L obj2 J— res J— books J
trsp trbp
Ltn 1 codedLfn 2 coded L —— fn2AR —
o text ___iglobals i free & stack__ |
. J
Obj * g;

Obj * fn1(){
Obj * obj1 = new Obj();
return objl;

}

void fn2(){
Obj * res = fn1();
Obj * obj2 = new Obj();
g = new Obj();

}

11

The Heap: Basic Idea

Heap Management

Disassociate memory region from ARs

e Memory snapshot ™
+ 0X60
... | ox60] | 1
g J[Obj JI—— objl books i obj2 J— res J— books J
trsp Yrbp

Lfn 1 codeLfn 2 code L falAR L fn2 AR — I
E_ _______ .'ng_t_______ji__glg?gl_s__il heap E: free stack i
. J

Obj * g;
Obj * fn1(){

}

Obj * obj1 = new Obj();
return objl;

void fn2(){

}

Obj * res = fn1();
Obj * obj2 = new Obj();
g = new Obj();

12

The Heap: Basic Idea

Heap Management

Disassociate memory region from ARs

e Memory snapshot ™
+ 0x60
0x60 i
g J[Obj " obj2 J— res J— booksJ
“rsp “rbp
Lfn 1 codedfn2coded L fm2AR — |
E_ _______ text i_ _g_l(_)?gl_s_ _l heap free stack
-~ J
Obj * g;

Obj * fn1(){

}

Obj * obj1 = new Obj();
return objl;

void fn2(){

}

Obj * res = fn1();
Obj * obj2 = new Obj();
g = new Obj();

13

The Heap: Basic Idea

Heap Management

Disassociate memory region from ARs

e Memory snapshot ™
;0x60 ;0x70 7
0x70 | 0x60 |

g J[Obj J[Obj obj2 J— res J— books J
“rsp trbp

Ltn 1 codedLfn 2 coded L fm2AR — 1

o text i globals i heap it free i stack |
. J

Obj * g;

Obj * fn1(){
Obj * obj1 = new Obj();

}

return objl;

void fn2(){

}

Obj * res = fn1();

Obj * obj2 = new Obj();

g = new Obj();

14

The Heap: Basic Idea

Heap Management

Disassociate memory region from ARs

e Memory snapshot ™
v 0x60 v 0x70 ¥ 0x80
0x80 ... | 0x70 [0x60 |

g J[Obj J[Obj l Obj obj2 J— res J— booksJ
trsp trbp

Ltn 1 codedLfn 2 coded L fm2AR —— 1

o text ____iglobals i heap iifreel stack !
. J

Obj * g;

Obj * fn1(){
Obj * obj1 = new Obj();
return objl;

}
void fn2(){

Obj * res = fn1();
Obj * obj2 = new Obj();
= new Obj();
»} g i)

About the Heap

Heap Management

Appropriately named:

* Not as well-ordered
compared to the stack

Benefits

* Reduces data copied
between caller and callee

16

About the Heap

Heap Management

Appropriately named: b3 + o

* Not as well-ordered Objgéii%éj;lj new 0bj () ;
compared to the stack N

Benefits op T xes = il

Obj * obj2 = new Obj();
g = new Obj();

* Reduces data copied }
between caller and callee

4 Memory snapshot ™
+0x60 + 0x70 +0x80
0x80 ... | 0x60 | 0x70 |
g J{ Ob)j J Obj l Obj obj2 J— res J— booksJ
t¢sp rbp
Lfn 1 codedLtn 2 codel L fm2AR — |
__codesegment | globals & heap iifreel stack

Appropriately named:

Benefits

About the Heap

Heap Management

Not as well-ordered
compared to the stack

Reduces data copied
between caller and callee

Flexible lifetime

Allows for various non-
stack abstractions

18

Heap- /A\ppmpr late Abstractions

Heap Management

Some Functions don’t fit the tradition stack-
based lifecycle

def outer {
int a;
* First-class functions def imller“{
a = 1;

 Function closures)

return inner;

}
Simply allocate the closure on the heap

Heap Allocation

Heap Management

Naive approach 1:
 Allocate all process memory at load time
* Incredibly wasteful (probably not even possible)!

A modern 64-bit OS will actually limit heap / stack
size to discrete, never-overlapping segments

* This might seem like a limitation — it isn’t

Manag ging the Heap

Heap Management

Only use the memory you need
 The whole point is to allocate memory dynamically

Heap Allocation: brk / sbrk

Heap Management

Linux syscall for growing the heap
*int brk(void *addr) ;

- Set the position of the program break

- Linux: when addr is O, returns current program break

program
break

__

22

Heap Allocation

Heap Management

Naive approach 2:

* Ask the OS to allocate exactly the number of bytes

we need for each new object
* Very slow!

Naive Scheme

program @
break stack
oo o
N _ Y e o Temaining T e mmmmmmmmm
| heap (grow per object) -> free v Stack Segment (doesn’t grow) |

__

Better Scheme (another budget)

program
heap break stack
budget l “budget”
________________________ [e_”lfi'ﬂ'_ng__..,______, __Temaining
_______ heap (growinchunks) > 1 free ii _Stack Segment (doesn’t grow) |

23

Heap Deallocation

Heap Management

When the heck do you free up heap memory?

Obj * g7 Obj * g;
Obj * fnl () { Obj * fnl () {
Obj * objl =

) { void fn2 () {
0b7 es = fnl(); fnl();
Obj * obj2 = new 0Obj () Obj * obj2 = new Obj();
g = new Obj (),

g = new Obj (),
} }

new Ob7j (), Obj * objl = new Obj();
return objl; return objl;
} }
void fn2 (
O : * T .

24

Heap Deallocation

Heap Management

When the heck do you free up heap memory?
Whose job is it?
e Simplest approach: rely on the programmer

: . \
e
RECYCLING

IS EVERYONE'S
RESPONSIBILITY

Heap Deallocation

Heap Management

When the heck do you free up heap memory?
Whose job is it?

e Simplest approach: rely on the programmer
* The C/C++ way
* Still some complexity in managing the heap

* Heap compaction

* “Modern” approach: free heap space automatically

Heap Manag@m@ﬂt Terminology

Heap Management

* Cells: data items on the heap

* Cells are pointed to by other cells, or by registers, stack
pointers, global variables

* Roots: registers, stack pointers, global variables

* A cell is live if it pointed to by a root or another live
cell

Garbage Collection

Heap Management: Garbage Collection Overview

e Garbage: A memory block
that cannot be (validly)
accessed by the program

* Obviously: a cell thatis no
longer live

* Less Obviously: An explicitly
deallocated cell still pointed-to

e Garbage collection:
Automatically reclaiming
garbage for use in future
allocation

28

Garbage Collection: Considerations

Heap Management: Garbage Collection Overview

Because it’s automatic it can be unpredictable

* |t better not be too disruptive to performance

* |t better be correct
* Don’t deallocate live cells / minimize memory leaks

Garbage Collection: Real-Time Issue

Heap Management: Garbage Collection

Because it’s automatic it can be unpredictable
* When is the garbage collector kick in?
* How long will it take to run?

The software product may contain support for programs written in Java. Java
technology is not fault tolerant and is not designed, manufactured, or
intended for use or resale as on-line control equipment in hazardous
environments requiring fail-safe performance, such as in the operation of
nuclear facilities, aircraft navigation or communication systems, air traffic
control, direct life support machines, or weapon systems, in which the failure
of Java technology could lead directly to death, personal injury, or severe
physical or environmental damage.

- From the Windows EULA

Today’s Outline

Heap Management: Garbage Collection

Heap Memory
* Using the heap
* OS interface
=) Garbage collection

[- Reference Counting]

* Mark and Sweep

Machine Codegen

31

Naive Reference Counting

Heap Management: Garbage Collection

Associate a count with
each Heap cell

e O

scope (i.e. dies), !

decrement count

* When a pointer is root |
assigned to the cell, set | %
increment count)
* When a pointer leaves =
)

Predictable, fairly fast

e Used by C++ smart N
pointers / Python (null) (null)

Naive Reference Counting: Limitations

Space Overhead

* 1 counter per cell
Time Overhead

* Fix up counts

* Check for self-loops
Potential leaks

* Cycles

Heap Management: Garbage Collection

W

33

Reference Counting: Summary

Heap Management: Garbage Collection

Associate a count with each Heap cell
* When a pointer is assigned to the cell, increment the count

* When a pointer goes out of scope/goes dead, decrement the count
Pretty predictable, relatively fast

* Used by C++ smart pointers / Python

Mark and Sweep

Heap Management: Garbage Collection

“Lazy” garbage collection

e (Can be) performed

when needed

Two-phase approach:

e Mark — Traverse

memory from the roots,

set a “mark bit” on
each cell

* Sweep — Free all

memory that wasn’t
marked

Mark and Sweep - Tradeoffs

Heap Management: Garbage Collection

Space Overhead - Low
* Only need 1 bit per cell
Time Overhead - High

* Need to traverse all data
structures

36

summary

Heap Management: Garbage Collection

Compiler-adjacent topic
* Probably implemented in a library and linked into the code

e Still an important aspect of the design and implementation of a
language!

Finished the basic workflow for the compiler!

Next Time

I.ecture Preview

How do we go from assembly code to an executable?

* The postcompilation toolchain

* The assembler
 The linker
* The loader

	Slide 1: Check-in 30 Review – Other Codegen
	Slide 2: Check-in 30 Solution Review – Other Codegen
	Slide 3: Announcements Administrivia
	Slide 4: Heap Management
	Slide 5: Previously… Other Code Generation
	Slide 6: Today’s Outline Heap Management
	Slide 7: The Stack “Budget” Heap Management – Heap Memory
	Slide 8: When the Stack isn’t enough Heap Management – Heap Memory
	Slide 9: Don’t Forget the Heap! Heap Management – Heap Memory
	Slide 10: Expressiveness/Efficiency Limitations Heap Management
	Slide 11: The Heap: Basic Idea Heap Management
	Slide 12: The Heap: Basic Idea Heap Management
	Slide 13: The Heap: Basic Idea Heap Management
	Slide 14: The Heap: Basic Idea Heap Management
	Slide 15: The Heap: Basic Idea Heap Management
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Heap Allocation Heap Management
	Slide 21
	Slide 22: Heap Allocation: brk / sbrk Heap Management
	Slide 23: Heap Allocation Heap Management
	Slide 24: Heap Deallocation Heap Management
	Slide 25: Heap Deallocation Heap Management
	Slide 26: Heap Deallocation Heap Management
	Slide 27: Heap Management Terminology Heap Management
	Slide 28: Garbage Collection Heap Management: Garbage Collection Overview
	Slide 29: Garbage Collection: Considerations Heap Management: Garbage Collection Overview
	Slide 30: Garbage Collection: Real-Time Issue Heap Management: Garbage Collection
	Slide 31: Today’s Outline Heap Management: Garbage Collection
	Slide 32: Naïve Reference Counting Heap Management: Garbage Collection
	Slide 33: Naïve Reference Counting: Limitations Heap Management: Garbage Collection
	Slide 34: Reference Counting: Summary Heap Management: Garbage Collection
	Slide 35: Mark and Sweep Heap Management: Garbage Collection
	Slide 36: Mark and Sweep - Tradeoffs Heap Management: Garbage Collection
	Slide 37: Summary Heap Management: Garbage Collection
	Slide 38: Next Time Lecture Preview

