
University of Kansas | Drew Davidson

1

Review – x64 Memory

Memory Layout

• Static Allocation

• The heap and the stack

Architecture

2

You should know
• What a static allocation scheme is

(and its limitations)
• How to do static allocation in x64

assembly
• The concepts of the stack and heap

Practical x64

Create more capable programs

• More (Linux) syscalls

• Library linking

• Library shims

Practicing basic x64 instruction use

Architecture

3

Practical x64 – More Capable Programs

You’re already familiar with sys_exit

• Put 60 in %rax

• Put the value to return in %rdi

There’s are many syscalls

• Officially documented in
syscall_64.tbl in the Linux source git

They adhere to a protocol

• Lots of documents on the web

• I like one by Ryan A. Chapman

4

https://github.com/torvalds/linux/blob/master/arch/x86/entry/syscalls/syscall_64.tbl
https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

Practical x64 – More Capable Programs

5

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

…
…

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

Practical x64 – More Capable Programs

6

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

…
…

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

7

fd 1 is stdout

Practical x64 – More Capable Programs

Practical x64 – More Capable Programs

8

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

…
…

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

Practical x64 – More Capable Programs

9

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

…
…

https://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

Practical x64 – More Capable Programs

10

O_CREAT | O_WRONLY

wrx for all

Practical x64 – More Capable Programs

11

Programmers are discouraged
from directly invoking syscalls

• Prefer to interact with the OS
through the language runtime
library

• But we don’t have that option…

OR DO WE?!?!?!?!
(yes, we do)

Practical x64

Create more capable programs

• More (Linux) syscalls

• Library linking

• Library shims

Practicing basic x64 instruction use

Architecture

12

Practical x64 – More Capable Programs

Handle tedious, error-prone functionality

• Example: printf

• libc contains native string handling functions for C programs

13

x64
our

Practical x64 – More Capable Programs

1. “Masquerade” as a C program

• Follow the conventions of the libc native code:

Adhere to the Application Binary Interface

2. Combine object code we write with compiled C code

• Good news: linking is already a well-supported operation

14

Be compatible with the System V ABI

Compiled C
object code

Our custom
object code

executable

Practical x64 – More Capable Programs

calculonc

as

ld

prog.calc

prog.s

prog.o

user input

components
we write

artifacts

existing
components

Key

linking workflow

executable

15

Practical x64 – More Capable Programs

calculonc

libc.so

as

ld

prog.calc

prog.s

prog.o

user input

components
we write

artifacts

existing
components

Key

executable

Reuse existing native code
for common functionality
(i.e. string printing)

16

linking workflow

Practical x64 – More Complicated Programs

SYSPATH=/usr/lib/x86_64-linux-gnu

ld \

-dynamic-linker /lib64/ld-linux-x86-64.so.2 \

$SYSPATH/crt1.o \

$SYSPATH/crti.o \

-lc \

prog.o \

$SYSPATH/crtn.o \

-o prog.exe

enable dynamic linking

init runtime data structures

entrypoint code
_start: exit(main)

link the libc library

release runtime data structures

17

Practical x64 – More Complicated Programs

18

Source code (prog.s)

ld prog.o –o prog

as prog.s –o prog.o

Standalone

Assembler command

Linker command

Clever C code disguise

Using libc

Practical x64 – More Complicated Programs

19

SYSPATH=/usr/lib/x86_64-linux-gnu

ld -dynamic-linker /lib64/ld-linux-x86-64.so.2

$SYSPATH/crt1.o $SYSPATH/crti.o –lc prog.o

$SYSPATH/crtn.o -o prog.exe

Source code (prog.s)

as prog.s –o prog.o

ld prog.o –o prog

Source code (prog.s)

as prog.s –o prog.o

Standalone

Assembler command

Linker command Linker command

Using libc

Assembler command

caveat: we’ll create a more
elaborate main function in later
lectures

*

Practical x64 – More Complicated Programs

20

Some System V ABI Facts:

• First argument is in %rdi

• Second argument is in %rsi

• Return value is in %rax

Practical x64 – More Complicated Programs

21

as prog.s –o prog.o

Assembly code

SYSPATH=/usr/lib/x86_64-linux-gnu

ld -dynamic-linker /lib64/ld-linux-x86-64.so.2

$SYSPATH/crt1.o $SYSPATH/crti.o –lc prog.o

$SYSPATH/crtn.o -o prog.exe

output
a

Practical x64

Create more capable programs

• More (Linux) syscalls

• Library linking

• Library shims

Practicing basic x64 instruction use

Architecture

22

Practical x64 – More Complicated Programs

23

How would we print an int?

• Sure would love to call printf!

• Calling printf seems… complicated

output
a

Practical x64 – More Complicated Programs

24

How would we print an int?

• Sure would love to call printf!

• Calling printf seems… complicated

• Maybe we could create a simpler
interface to printf?

Practical x64 – More Complicated Programs

25

How would we print an int?

• Sure would love to call printf!

• Calling printf seems… complicated

• Maybe we could create a simpler
interface to printf?

libc

prog.s

shim.c

Practical x64 – More Complicated Programs

calculonc

libc.so

as

ld

prog.calc

prog.s

prog.o

user input

components
we write

artifacts

existing
components

Key

executable

Reuse existing native code
for common functionality
(i.e. string printing)

26

linking workflow

Practical x64 – More Complicated Programs

calculonc

gcc -c

shim.c

libc.soshim.o

as

ld

prog.calc

prog.s

prog.o

user input

components
we write

artifacts

existing
components

Key

executable

Reuse existing native code
for common functionality
(i.e. string printing)

27

Code new functionality
in existing source languages
(i.e. intrinsics)

linking workflow

Practical x64

Create more capable programs

• More (Linux) syscalls

• Library linking

• Library shims

Practicing basic x64 instruction use

Architecture

28

Practical x64 – Basic instruction use

29

x64 Practice – Basic instruction use

30

