; QreW' Davidson | UniVerS.ity of Kangas - -

i . -
\
"-»

MM n v H" n -ﬁr-— -~ &

CONSTRUCTION

Instruction Sét Architectures
A s

Runtimes

Last Time

Lecture Review - Runtimes

e Runtime Environments

Tradeoff between what’s done
dynamically vs statically

e Hardware Intuition

Memory is a big 1D array

-

-

You Should Know
Different runtime environment types
* Advantages/Disadvantages
Compiling vs Interpreting

~

Runtime
Environments

This Time

Lecture Outline — ISAs

Instruction-Set Architectures
* What an ISA does

* Our target ISA: x64

* Writing x64

Runtime
Environments

Hardware Capabilities

ISAs - Intro

Computers can store
binary sequences in
memory

-
* An entire program Scientists

thus needs to be
mapped to binary

Seq uences Electrical
Engineers

Programs as Numeric Sequences

ISAs - Intro

We gotta encode the whole dang program into
this sucker!

* Encode data as binary sequences
 Encode instructions as binary sequences

Address Address Address Address Address Address Address Address Address Address Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008 0x0009 Ox000A

0x44 Ox01 | 0x02 0Ox44 | O0x01 0x03 0OxO07 | 0x00 0Ox00 | O0x00 0x03

Need to use the
same space for
many things

The [SA Contract

ISAs - Intro

An ISA specifies

e How data is encoded

Software

e |nstructions that can transform
data

e Opcodes for how instructions
are encoded

‘{DA_ Q‘;’j’% 0, o
g & %"Z(’% u‘.%m’ -
"~ e 2
o N
\ >

* Program state ISA: A contract of hardware aspects

Instruction Set Architectures

ISAs - Intro
° HOW data is encoded ____________________________________ -2 is encoded as 1110
-1 is encoded as 1111
8 is encoded as 1000
12 is encoded as 1100
* Instructions that can transform ----------------- The INC_ADDR <X> instruction
data increments the value at
memory address <X>
* Opcodes for how instructions - INC_ADDR 8 is encoded (010
are encoded as 16161010-66010000
* Program state -------oeoeeeeeesesee s Next instruction to execute

is stored in register |

Processors Conform to [SAs

ISAs - Intro
4 N
* Upon encountering a byte Y;“yj::g"j:g";?
sequence an ISA-conformant
“knows” how to interpret w J

the sequence

e Still has some flexibility on
how to execute it, specified
via the microarchitecture

adiih

Completely Hypothetical ISA Example

ISAs - Intro
-2 is encoded as 1110 The INC_ADDR <X> INC ADDR 8 Next instruction
-1is encoded as 1111 increments the value at encoded as to execute
8 is encoded as 1000 memory address <X> 1010 stored in register |
12 is encoded as 1100 —
£x -
/ eCute the The "Nstryceip,,
MStructy, 9t adqy
adar, "at s IN, 5512
€ss 12 CADpR g
t Register I: | 1140
the vale S 2
ddress 81 Address Address Address Address Address Address Address Address
a 8 9 10 11 12_—343__ 14 15

More Realistic Encodings

ISAs - Intro

The previous ISA uses
unrealistic encodings

* Let’s consider some more
likely choices

10

Encoding Data: Granularity ot Access

ISAs - Intro

How “big” is a memory cell?

OaFFFF

Let’s say we're storing the byte 0x61 = 01100001 6 PN
2 O HFR
Bit-addressable
Address Address Address Address Address Address Address Address Address Address Address
00000, 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008 0x0009 0x000A
0 1 0 0 0 1 0 0 0 0 0
Byte-addressable e
Address Address Address Address Address Address Address Address Address Address Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008 0x0009 0x000A
0Ox44 Ox01 | 0Ox02 Ox44 | Ox01 0x03 Ox07 | Ox00 Ox00 | Ox00 0x03

Could even go bigger?
But why (and why not)?

Data Encodings

You should already know
the basic idea here

* Type dictates numeric
representation

* Devote a certain size (in
bits) to representation

* Use binary hardware to
store the numeric value

ISAs - Intro

Bit Sequence (binary)

01000011 01001111 01001111 01001100

Byte Sequence (Hex)
0x43 Ox4F Ox4F 0x4C

ASCII Value: char type (8 bits, i.e. 1 byte)

ICI IOI IOI ILI

Integer Value: int32 type (32 bits, i.e. 4 bytes)

O0x434FAF4A1

1,129,271,105

Convention: Memory Regions

ISAs - Intro

Portions of memory “zoned” by purpose
Simplest form:

 Coderegion

* Data region

* Therestis free space

Memory

Address Address Address Address Address Address Address Address Address Address Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008 0x0009 0x000A

code data free

13

Data Sub-Regions

ISAs - Intro

Further break up data region
for different kinds of data

 Global variables
 Local variables
* Objects

; [N THRERD
A A A N N D T » B » ®» ®» D >
* S e e R b el Yl

14

This Time

Lecture Outline — ISAs

Instruction-Set Architectures
Ve What an ISA does

'Gur targEISA:@

* Writing x64

Runtime
Environments

15

Our ISA: x64

Intro to Assembly: About

* Probably the most popular architecture in modern use
* Almost certainly what your computer is running
* Definitely what the cycle servers are running

x86 and x64: A Reputation for Difficulty

Intro to Assembly: About

Highly complex
instruction set

e ~1000 different
instructions via the
most conservative
count™

e Some instructions
context-sensitive
(i.e. work differently

based on preceding

instru ctions) *that we don’t have a canonical
instruction count
is already a pretty bad sign

17

Why is it called x647

Intro to x64: About

Short for x86-64

* The 64-bit extension of
the x86 instruction set

So then what is x86?

* A dang mess!

18

Some Architecture History: x86 ™=/

Intro to x64: About

1982 1985 1989 1993 1995 1997 1999 2000
| | | | | | | |
| | | | | T
N7 % & S £ &
6, % & 2 ” & 4 4 /
% b, w4 % I
Q-’ 7

19

[tanium: A Fresh Start?

Intro to x64: About

2001: Itanium released by Intel
* non-backward-compatible 64-bit architecture

* A new architecture philosophy heavily reliant on
compiler optimization

e Ditches much of the messiness of x86
Highly anticipated

* Development of MIPS and DEC Alpha halted in
anticipation

[tanium: How Did it Go

Intro to x64: About

“one of the greatest fiascos of
the last 50 years”

- John C. Dvorak
“a joke in the chip industry”
- Ashlee Vance

“it turned out the wished-for
compilers were basically
impossible to write”

- Donald Knuth

?

21

AMD Swoops In

Intro to x64: Background

2003: AMD64

e AMD’s backwards-
compatible 64-bit x86
extension

* Intel eventually catches
up with compatible Intel
64 architecture

X64 used to denote the
vendor-neutral
intersection of AMDG64
and Intel 64

22

The Upshot: A Patchwork

Intro to x64: Background

* x86 carries many
features that lack
modern salience

e x64 avoids a lot of these

 Still has some WTF
features

* Many to do with
register-poorness

23

X64 Registers

Intro to Assembly: About

0 Computation Accumulator
rbx 1 Computation Base
rcx 2 Computation counter
rdx 3 Data for I/O .
rsi 4 String source address ICnasrt]rzitliJc?re\Cj):onco des
rdi 5 String destination address
rbp 6 Base pointer (base of the stack)
rsp 7 Stack pointer (edge of the stack)
rO8—r1l5 &8-15 True general purpose registers _
rip - Instruction pointer)

— Cannot be used in

rflags) Status flags | instruction opcodes

24

x64 Register Compatibility

Intro to Assembly: About

Register #0 — the “A” register

byte 8

byte 7

byte 6

byte 5

byte 4

byte 3

byte 2

byte 1

\II‘|

6%

3L

25

This Time

Lecture Outline — ISAs

Instruction-Set Architectures
e What an ISA does
* Our target ISA: x64

Runtime
Environments

26

Stepping Back From Binary

Encoding Programs

Dealing with binary directly is
tedious and error-prone

* Laying out code / data is super
difficult to do manually

« Remembering the binary opcode
sequence for every instruction is
difficult

Fortunately, we don’t have to do
that

27

The Assembler

Intro to Assembly: About

Write low-level textual
mnemonics (assembly = |

code) 2

'

e Assembly code isn’t
directly executable

* Nearly 1-1 with the
binary encoding

* Different assemblers,
different syntax

ASM |nstruction sSyntax

X64 syntax

As with everything x86-related, it’s complicated

 We'll use the AT&T Syntax: S
<opcode><sizesuffix> <src operand(s)> <dst operand>

\/

* Immediates (i.e. constant values) prefixed by S

* Registers prefixed by %
 Memory lookup (i.e. dereference) in parens

mov the 64-bit value 5 into the 64-bit
memory address specified by register rax

Directives

Xx64 syntax

* Indicates a command to the assembler
* Layout, program entrypoint, etc.

Example:
.globl X

Indicates that symbol X is visible outside of the file

c lada

Segment Directives

Intro to x64: Writing Assembly

.Lext

.data

Lay out items in the
user text segment

Instructions go here

\ O —

Lay out items in the
data segment

Globals go here

\

regl\ &&I{: reg3 regd regs
0x2000 0x2001 0x2002 cg& 0x2004 0x2005 0x2006 0x2007 0x2008 O0x2009 O0x200A 0x200B
Ox44 | Ox02 | Ox03 || Ox68 | Ox65 | Ox6c || Ox6c | Ox6f 0x77 | Oxé6f 0x72 | Ox6c¢
code global data heap-> || freespace || <-stack |

31

Labels

Xx64 syntax
* The assembler allows us to imp Ox12d34a5678a
specify “placeholder” A
addresses that will be used jmp LBL1
later i

o LBL1: movq S5 (%rax)

* Translated to “rea
addresses by a utility called

the linker
movg 35 (b
 Valid for both data and 1/ (3

code locations

$rax
Srdi

System calls

Intro to x64: A program

To interact outside program memory, need the help of the OS

syscall

Which system call (60 is exit)
Set syscall arg - (exit takes the return code)

33

Time to put it all together!

Intro to X64

Photo Credit: Tim Klein - https://puzzlemontage.crevado.com

34

https://puzzlemontage.crevado.com/

A Complete Program

Intro to x64: A program

[—

.Lext

.globl start

_start:
movg $60, %rax
movqg $4, %rdi
syscall

R

Choose syscall exit
Set syscall arg - return code

35

Actually Running a Program

Intro to x64: A program

Invoking the assembler and linker
AsM (o) 2

-~ as@ start.o sta\!/t.s

|d start.o —o prog

,/0,05

o’ §7
e

36

