
Lecture Review - Runtimes

Runtimes

• Runtime Environments

Tradeoff between what’s done

dynamically vs statically

• Hardware Intuition

Memory is a big 1D array

1

Runtime
Environments

You Should Know
• Different runtime environment types

• Advantages/Disadvantages
• Compiling vs Interpreting

Drew Davidson | University of Kansas

Lecture Review - Runtimes

Runtimes

• Runtime Environments

Tradeoff between what’s done

dynamically vs statically

• Hardware Intuition

Memory is a big 1D array

2

Runtime
Environments

You Should Know
• Different runtime environment types

• Advantages/Disadvantages
• Compiling vs Interpreting

Lecture Outline – ISAs

Instruction-Set Architectures

• What an ISA does

• Our target ISA: x64

• Writing x64

3

Runtime
Environments

ISAs - Intro

Computers can store
binary sequences in
memory

• An entire program
thus needs to be
mapped to binary
sequences

4

Electrical
Engineers

Computer
Scientists

ISAs - Intro

5

We gotta encode the whole dang program into
this sucker!
• Encode data as binary sequences
• Encode instructions as binary sequences

Need to use the
same space for
many things

Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0007 0x0008 0x0009 0x000A0x0006

0x44 0x01 0x00 0x00 0x00 0x03

Address Address Address Address Address Address Address Address Address Address

0x070x44 0x01 0x030x02

ISAs - Intro

6

Hardware

Software

ISA: A contract of hardware aspects

An ISA specifies

• How data is encoded

• Instructions that can transform
data

• Opcodes for how instructions
are encoded

• Program state

7

Hypothetical ISA

-2 is encoded as 1110
-1 is encoded as 1111
8 is encoded as 1000
12 is encoded as 1100

The INC_ADDR <X> instruction
increments the value at
memory address <X>

INC_ADDR 8 is encoded
as 10101010 00010000

Next instruction to execute
is stored in register I

ISAs - Intro

An ISA specifies

• How data is encoded

• Instructions that can transform
data

• Opcodes for how instructions
are encoded

• Program state

ISAs - Intro

8

• Upon encountering a byte
sequence an ISA-conformant
“knows” how to interpret
the sequence

• Still has some flexibility on
how to execute it, specified
via the microarchitecture

You’re speakin’
my language!

ISAs - Intro

9

-2 is encoded as 1110
-1 is encoded as 1111
8 is encoded as 1000
12 is encoded as 1100

The INC_ADDR <X>
increments the value at
memory address <X>

INC_ADDR 8
encoded as
1010

Address
8 9 10 11 12 13 1514

1 1 0

Address Address Address Address Address Address Address

10 1 01 ……

Next instruction
to execute
stored in register I

Register I: 1110

1111

ISAs - Intro

10

The previous ISA uses
unrealistic encodings

• Let’s consider some more
likely choices

ISAs - Intro

11

How “big” is a memory cell?

Bit-addressable

Let’s say we’re storing the byte 0x61 = 01100001

Byte-addressable

Could even go bigger?
But why (and why not)?

Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0007 0x0008 0x0009 0x000A0x0006

0 1 0 0 0 0

Address Address Address Address Address Address Address Address Address Address

00 0 10

Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0007 0x0008 0x0009 0x000A0x0006

0x44 0x01 0x00 0x00 0x00 0x03

Address Address Address Address Address Address Address Address Address Address

0x070x44 0x01 0x030x02

ISAs - Intro

You should already know
the basic idea here

• Type dictates numeric
representation

• Devote a certain size (in
bits) to representation

• Use binary hardware to
store the numeric value

12

0x43

‘C’

0x434F4F41

0x4F 0x4F 0x4C

0100 0011 0100 1111 0100 1111 0100 1100

‘O’ ‘O’ ‘L’

1,129,271,105

Bit Sequence (binary)

Byte Sequence (Hex)

ASCII Value: char type (8 bits, i.e. 1 byte)

Integer Value: int32 type (32 bits, i.e. 4 bytes)

ISAs - Intro

13

Portions of memory “zoned” by purpose
Simplest form:

• Code region
• Data region
• The rest is free space

Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0007 0x0008 0x0009 0x000A0x0006

Address Address Address Address Address Address Address Address Address Address

Memory

code data free

ISAs - Intro

14

Further break up data region
for different kinds of data

• Global variables

• Local variables

• Objects

Lecture Outline – ISAs

Instruction-Set Architectures

• What an ISA does

• Our target ISA: x64

• Writing x64

15

Runtime
Environments

16

• Probably the most popular architecture in modern use

• Almost certainly what your computer is running

• Definitely what the cycle servers are running

Highly complex
instruction set

• ~1000 different
instructions via the
most conservative
count*

• Some instructions
context-sensitive
(i.e. work differently
based on preceding
instructions)

17

*that we don’t have a canonical
instruction count
is already a pretty bad sign

Short for x86-64

• The 64-bit extension of
the x86 instruction set

So then what is x86?

• A dang mess!

18

19

1978 1982 1985 1989 1993 1995

Intel attempts to trademark

the number 486, gets denied

1997 1999 2000

“five” + science-y sounding

20

2001: Itanium released by Intel

• non-backward-compatible 64-bit architecture

• A new architecture philosophy heavily reliant on
compiler optimization

• Ditches much of the messiness of x86

Highly anticipated

• Development of MIPS and DEC Alpha halted in
anticipation

21

“one of the greatest fiascos of
the last 50 years”

- John C. Dvorak

“a joke in the chip industry”

- Ashlee Vance

“it turned out the wished-for
compilers were basically
impossible to write”

- Donald Knuth

22

2003: AMD64

• AMD’s backwards-
compatible 64-bit x86
extension

• Intel eventually catches
up with compatible Intel
64 architecture

X64 used to denote the
vendor-neutral
intersection of AMD64
and Intel 64

amd

intel

23

• x86 carries many
features that lack
modern salience

• x64 avoids a lot of these

• Still has some WTF
features
• Many to do with

register-poorness

Name Number Nominal Purpose

rax 0 Computation Accumulator

rbx 1 Computation Base

rcx 2 Computation counter

rdx 3 Data for I/O

rsi 4 String source address

rdi 5 String destination address

rbp 6 Base pointer (base of the stack)

rsp 7 Stack pointer (edge of the stack)

r08 – r15 8 - 15 True general purpose registers

rip - Instruction pointer

rflags - Status flags

24

Can be used in
Instruction opcodes

Cannot be used in
instruction opcodes

25

Register #0 – the “A” register

rax

eax

ax

alah

byte 8 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1

Lecture Outline – ISAs

Instruction-Set Architectures

• What an ISA does

• Our target ISA: x64

• Writing x64

26

Runtime
Environments

27

Dealing with binary directly is
tedious and error-prone

• Laying out code / data is super
difficult to do manually

• Remembering the binary opcode
sequence for every instruction is
difficult

Fortunately, we don’t have to do
that

Write low-level textual
mnemonics (assembly
code)

• Assembly code isn’t
directly executable

• Nearly 1-1 with the
binary encoding

• Different assemblers,
different syntax

28

Compiler AssemblerCode

29

As with everything x86-related, it’s complicated

• We’ll use the AT&T Syntax:
<opcode><sizesuffix> <src operand(s)> <dst operand>

• Immediates (i.e. constant values) prefixed by $

• Registers prefixed by %

• Memory lookup (i.e. dereference) in parens

movq $5, (%rax)

mov the 64-bit value 5 into the 64-bit
memory address specified by register rax

30

• Indicates a command to the assembler
• Layout, program entrypoint, etc.

Example:
.globl X

Indicates that symbol X is visible outside of the file

31

.data

Lay out items in the
data segment

.text

Lay out items in the
user text segment

Instructions go here Globals go here

32

• The assembler allows us to
specify “placeholder”
addresses that will be used
later
• Translated to “real”

addresses by a utility called
the linker

• Valid for both data and
code locations

jmp 0x12d34a5678a

jmp LBL1
…

LBL1: movq $5 (%rax)

33

To interact outside program memory, need the help of the OS

%rax # Which system call (60 is exit)

%rdi # Set syscall arg – (exit takes the return code)

syscall

34Photo Credit: Tim Klein - https://puzzlemontage.crevado.com

https://puzzlemontage.crevado.com/

35

.text

.globl _start

_start:

movq $60, %rax # Choose syscall exit

movq $4, %rdi # Set syscall arg - return code

syscall

36

Invoking the assembler and linker

as –o start.o start.s
ld start.o –o prog

