Check-in

Review: Regular expressions

Translate the following LANGNAME code into 3AC

fn : () int -> £{
a:int;
a =1+ 2;
return a;

}

. : Un-i'versity of Kansas | Drew Davidson

MM n v n-' n !r— SESY
CONS] ﬂlﬂll

BKC Translation_

Last Time

Intermediate Representations

Intermediate Representations

3AC

-

.

What you should know:

Rational of intermediate representations
The basic idea of 3AC
- The instruction set
- What each instruction more-or-less
does

~

/

Intermediate
Representations

The List of Instruction Templates

Review: Our 3AC Instructions

<opd> :=<opd> <

<opd>:= <opr> <opd>
<opd> := <opd> <opr> <opd>
<lbl>: <INSTR>

goto <Ibl>

ifz <opr> goto <Ibl>

nop

call <name>

enter <proc>

leave <proc>

setarg <int> <opd>

getarg <int> <opd>

setret <opd>

getret <opd>

3AC: Exercise

Another Example

H b d s v g yfe o
ﬁ ATy %L{ aa»l

’37 "s 44 °6 \acw

LBLL:N%Yﬂ = [X] W”f [ﬂ

I.](Z " L} Sojfﬂ [,BLJ«

[[K] = [x} MULTEY 2
30'}0 LBLA—-

(LBl] fy 1= [x]

4
v |
v

4 \
Intermediate code
generation

In progress ——

Compiler Construction

Scanner
Lexical analysis |

y

Parser
Syntactic analysis)

y

Semantic analysis

y

\

y

IR optimization

Final
gene

y
Code
ration

\

y

Final

code

optimization

Progress Pics

Done

* We've captured the semantics of
the input

* We've checked the program for
correctness

Next Steps
* Prepare the program for output

Today’s Outline

3AC Translation

The basic idea:

* Traversing the AST

Some example nodes

* Node to quad translations
Implementation details:

* From nodes to Operations/Operands

Intermediate
Representations

Flattening the Tree

AST Translation to 3AC

Z

N S

Flattening the Tree

AST Translation to 3AC

‘" ,/\

vo i E sl
e

. w... r"?l' “ '

Flattening the Tree

AST Translation to 3AC

Consider two major task categories:
What we...

Generate
e (i.e. the 3AC operations for the current node) .

/1 }\

Propagate

* (i.e. the 3AC operands used in parent nodes)

Flattening The Tree: Example

Traversing the AST

Traverse AST, performing two tasks
* Generate 3AC operations

* Propagate 3AC operands

a=(v-T7) +a*v 7[AsﬂgnSUnt]20

tl] := SUB64 77
l 1//“ ‘\\51\5%\ [] [V]
.] [t2] :
[

:= [a] MULTo64d [v]
AssignExp |79 3
opd t3] := [tl] ADD64 [t2]
us opd

/opd A

What if we walked the tree in a different order?
 Take the RHS of the Plus before the LHS

(v = 7)

+ a * v

A Brief Aside on Sequencing

Traversing the AST

[t2]

[t1]
[t3]

[a] MULT64 [V]
[v] SUB64 7
[t1] ADD64 [t2]
[£3]

[v] SUB64 7

[a] MULT64 [V]
[t1] ADD64 [t2]

[t3]

A Brief Aside on Sequencing

Traversing the AST
What if we walked the tree in a different order? .o, .- (4 « (v
 Take the RHS of the Plus before the LHS [t1] := [v] = 7
. . . t3 = [tl t2
* Cand C++ leave this choice to the compiler! [[]] Et;] .
a =
[tl] := [v] =7
Does traversal order matter? !
+ In this AST? ralem el
A '? [t3] := [tl] + [t2]
For all ASTs: Al - o3

Example code
int foo(){ cout << “hi”; return 0; }

int bar(){ cout << “class”; return 0; }
int main(){

cout << foo() + bar();

}

A Brief Aside on Sequencing

Traversing the AST

What if we walked the tree in a different order?

[t2] := [a] * [V]
* Take the RHS of the Plus before the LHS [t1] := [v] =7
. . . [t3] := [tl] + [t2]
* Cand C++ leave this choice to the compiler! . .
a =
Order DOES matter
 (Can change the program’s semantics! [t1] = [v] = 7
[t2] := [a] * [V]
int gy
[t3] = [tl] + [t2]
int foo() { return g; } [a] — [t3]
int bar() { g++; return g; }
int main(){ g = 0; return foo() * bar(); }

For our language, always go left to right
(when possible)

Today’s Outline

The basic idea:

* Traversing the AST
Example Nodes:

* Node to quad translations
Implementation details:

* Operations and operators

3AC Translation

Intermediate
Representations

15

Example Nodes

Node to Quad Translations

This generate + propagate idea is powerful!

* Basically worked for previous traversals:
* Name analysis
* Type analysis
* Syntax-directed translation

* Let’s see how it works for some various node types

Translating AST Leaves (IDs and Lits)

AST Translation to 3AC
Generate:
* Nothing!
Propagate:
* The value for use in parent AST Shippet

8 o

17

Translating AssignExp
AST Translation to 3AC
Generate:

e Code for the LHS (recurse)

e Code for the RHS (recurse)

* The actual assignment instruction
Propagate:

* The LHS of the assignment

Translating BinaryOp Nodes

AST Translation to 3AC
Generate:

e Code for LHS, RHS (recurse in order)
* Node’s operation kind, assigning to new temp
Propagate:

 The new temp value (for use in parent)

7% v

MULT64 [V]
tmpl] ADD64 [a] .,

[tmpl] := 7 MULT64 [V] [tmpl] :=

1D
v
:
[

Translating CallExpNodes

AST Translation to 3AC

Generate:

* (Recurse over args, left to right)
* setarg instrs for each argument
* call instr for function

e getret instr for the result
Propagate:

* The getret symbol

src code snippet

k = foo(7,varX, a+b)

CallEx (7, varX, tmp8)

tmp8
varX

(Arg evaluation)
setarg 1, 7/
setarg 2, [varX]
setarg 3, [tmp8]
call fn foo
getret [tmp9]

[k] := [tmp9]

20

Translating FnDeclNodes

Generate:

- enter quad to begin scope

* A label for function’s_e___nd

—

« getarg quads for each argument

* (recurse into body)

« leave quad to end scope
Propagate:

* Nothing

src code snippet

void fn(int al, int a2) {

}

AST Translation to 3AC

enter fn

getarg 1, [al]
getarg 2, [aZ2]
(body code)

L fn end: leave fn
e —

21

Translating ReturnStmtNodes

AST Translation to 3AC

Generate:

* (recurse into expression)
« setret quad for expression tmp

» goto for the function end

ReturnStmt

Propagate:
* Nothing

src code snippet

return a+2; [tmpl] := [a] ADDo64d 2

setret [tmpl]
goto L fn end

22

Translating [fStmtNodes

Generate:

* (recurse into conditional)
An “after the body” label
ifz to after the body label

(recurse into body)

nop with the new label
Propagate:
* Nothing

src code snippet

1f (9 < wvar) {
(body code)
}

AST Translation to 3AC

tmpO
9 !% % var
[tmpO] := 9 LT64 [var]

ifz [tmpO] goto L a

(body code)

L a: nop

23

Translating While Loops

AST Translation to 3AC
Generate:
* Label for loop head WhileLoop

nop for loop head label

(recurse into conditional)
ifz to “after the body”

* (recurse into body) I head: nop
* Jump back to head [tmp0] := 9 LT64 [var]
Propagate: 1fz [tmpO] goto
* Nothing (body code)
src code snippet goto L head

while (9 < wvar) {
nop
(body code) @

}

24

Generate:

* Assign address of
expression to a new temp

Propagate:
* New temp

src code snippet

record R{
int a;

}

R r;

r.a = 1;

Translating Index

AST Translation to 3AC

AST snippet

ltmpz

3AC snippet

[tmpl] := [
tmp2 :=r

25

Today’s Outline

The basic idea:

* Traversing the AST
Example Nodes:

* Node to quad translations
Implementation details:

* Operations and operators

3AC Translation

Intermediate
Representations

26

3AC Data Structures

AST Translation to 3AC: Implementation

* One class per 3AC node type
e Often referred to as “Quads” — has at most 4 fields (+ label)
* Each procedure maintains a list of its quads

Ibl dst srcl opr src2

Z_

bLi T 4] 0= T=L SuBp &

27

Translation Implementation

AST Translation to 3AC
src code snippet AST Quads
a =7+ (a-v) AssignStmt Ibl dst src; opr src,

tmpl a SUB v
(y) (o) 64 (B)

tmp2 . ADD tmpl

(9) 64 (y)

tmp2 ASG
(@) (3)

Symbol: Symbol:)

Symbol:
Kind: var Kind: var Klnd tmp Kind: tmp
Type: int Type: int Type: int Type: int

Name: a Name: v Name: tmp1l Name: tmp2

Translation Implementation

AST Translation to 3AC

At this point, we can discard Quads
the AST Ibl dst src, opr src,
tmpl SUB
* New data structures for the @) @ 6 (B
3AC representation: tmp2 _ ADD tmpL.
* Quad class (with subclasses (0) 64 (y)

for each quad type) a tmp2 ASG
() (6) 64
* Procedure class
e Contains list of quads

e Operand abstraction
(symbols)

Lecture End

3AC Translation

We've successfully flattened
the AST 4 A
* Got a nice target for final

code generation C Rust || Haskell
* Removed the nesting N \\A/ ~
* Make execution order IR

explicit e~
Next time X64 || MIPS ||WebAsm
 Start gxploring the (et

compiler targets - /

The multicompiler concept
One IR for many sources, many targets

3AC In Summary

AST Translation to 3AC

A Nice Linear IR

e (Gets us close to real hardware

* Abstract enough to be used in a
variety of backends

	Slide 1: Check-in Review: Regular expressions
	Slide 2: 3AC Translation
	Slide 3: Last Time Intermediate Representations
	Slide 4: The List of Instruction Templates Review: Our 3AC Instructions
	Slide 5: 3AC: Exercise Another Example
	Slide 6: Compiler Construction Progress Pics
	Slide 7: Today’s Outline 3AC Translation
	Slide 8: Flattening the Tree AST Translation to 3AC
	Slide 9: Flattening the Tree AST Translation to 3AC
	Slide 10: Flattening the Tree AST Translation to 3AC
	Slide 11: Flattening The Tree: Example Traversing the AST
	Slide 12: A Brief Aside on Sequencing Traversing the AST
	Slide 13: A Brief Aside on Sequencing Traversing the AST
	Slide 14: A Brief Aside on Sequencing Traversing the AST
	Slide 15: Today’s Outline 3AC Translation
	Slide 16: Example Nodes Node to Quad Translations
	Slide 17: Translating AST Leaves (IDs and Lits) AST Translation to 3AC
	Slide 18: Translating AssignExp AST Translation to 3AC
	Slide 19: Translating BinaryOp Nodes AST Translation to 3AC
	Slide 20: Translating CallExpNodes AST Translation to 3AC
	Slide 21: Translating FnDeclNodes AST Translation to 3AC
	Slide 22: Translating ReturnStmtNodes AST Translation to 3AC
	Slide 23: Translating IfStmtNodes AST Translation to 3AC
	Slide 24: Translating While Loops AST Translation to 3AC
	Slide 25: Translating Index AST Translation to 3AC
	Slide 26: Today’s Outline 3AC Translation
	Slide 27: 3AC Data Structures AST Translation to 3AC: Implementation
	Slide 28: Translation Implementation AST Translation to 3AC
	Slide 29: Translation Implementation AST Translation to 3AC
	Slide 30: Lecture End 3AC Translation
	Slide 31: 3AC in Summary AST Translation to 3AC

