
University of Kansas | Drew Davidson

1

Intermediate Representations

Intermediate Representations

3AC

2

What you should know:

- Rational of intermediate representations
- The basic idea of 3AC

- The instruction set
- What each instruction more-or-less

does

Intermediate
Representations

Review: Our 3AC Instructions

3

call <name>

setarg <int> <opd>

setret <opd>

getret <opd>

getarg <int> <opd>

enter <proc>

leave <proc>

ifz <opr> goto <lbl>

goto <lbl>

<lbl>: <INSTR>

<opd> := <opd> <opr> <opd>

<opd> := <opr> <opd>

<opd> := <opd>

nop

Another Example

int x;

int y;

while (x < y) {

x = x * 2;

}

y = x;

4

Done

• We’ve captured the semantics of
the input

• We’ve checked the program for
correctness

Next Steps

• Prepare the program for output

5

Scanner
Lexical analysis

Parser
Syntactic analysis

Semantic analysis

Intermediate code
generation

IR optimization

Final Code
generation

Final code
optimization

In progress

Progress Pics

3AC Translation

The basic idea:

• Traversing the AST

Some example nodes

• Node to quad translations

Implementation details:

• From nodes to Operations/Operands

6

Intermediate
Representations

AST Translation to 3AC

7

AST Translation to 3AC

8

AST Translation to 3AC

Consider two major task categories:

What we…

Generate
• (i.e. the 3AC operations for the current node)

Propagate
• (i.e. the 3AC operands used in parent nodes)

9

Traversing the AST

Traverse AST, performing two tasks

• Generate 3AC operations

• Propagate 3AC operands

10

a = (v – 7) + a * v

[t2] := [a] MULT64 [v]

[t3] := [t1] ADD64 [t2]

[a] := [t3]

[t1] := [v] SUB64 7

AssignExp

ID
a

Mult

Plus

AssignStmt

Sub

ID
v

IntLit
7

ID
v

ID
a

1

2

3 4 5

6

7 8 9 10

11 12

13 14 15 16

17

18

19

20

a
opd

v
opd

t1
opd

7
opd

a
opd

v
opd

t2
opd

t3
opd

a
opd

Traversing the AST

What if we walked the tree in a different order?

• Take the RHS of the Plus before the LHS

11

a = (v – 7) + a * v

[t2] := [a] MULT64 [v]

[t3] := [t1] ADD64 [t2]

[a] := [t3]

[t1] := [v] SUB64 7

[t2] := [a] MULT64 [v]

[t3] := [t1] ADD64 [t2]

[a] := [t3]

[t1] := [v] SUB64 7

AssignExp

ID
a

Mult

Plus

AssignStmt

Sub

ID
v

IntLit
7

ID
v

ID
a

1

2

3 4 5

12

13 14 15 16

17 6

7 8 9 10

11

18

19

20

a
opd

v
opd

t1
opd

7
opd

a
opd

v
opd

t2
opd

t3
opd

a
opd

Traversing the AST

What if we walked the tree in a different order?

• Take the RHS of the Plus before the LHS

• C and C++ leave this choice to the compiler!

12

[t2] := [a] * [v]

[t3] := [t1] + [t2]

[a] := [t3]

[t1] := [v] - 7

[t2] := [a] * [v]

[t3] := [t1] + [t2]

[a] := [t3]

[t1] := [v] - 7

Participation
Does traversal order matter?
• In this AST?
• For all ASTs?

Example code
int foo(){ cout << “hi”; return 0; }
int bar(){ cout << “class”; return 0; }
int main(){

cout << foo() + bar();
}

Traversing the AST

What if we walked the tree in a different order?

• Take the RHS of the Plus before the LHS

• C and C++ leave this choice to the compiler!

13

[t2] := [a] * [v]

[t3] := [t1] + [t2]

[a] := [t3]

[t1] := [v] - 7

[t2] := [a] * [v]

[t3] := [t1] + [t2]

[a] := [t3]

[t1] := [v] - 7

Order DOES matter
• Can change the program’s semantics!

For our language, always go left to right
(when possible)

int main(){ g = 0; return foo() * bar(); }

int bar() { g++; return g; }

int foo() { return g; }

int g;

3AC Translation

The basic idea:

• Traversing the AST

Example Nodes:

• Node to quad translations

Implementation details:

• Operations and operators

14

Intermediate
Representations

Node to Quad Translations

This generate + propagate idea is powerful!

• Basically worked for previous traversals:
• Name analysis

• Type analysis

• Syntax-directed translation

• Let’s see how it works for some various node types

15

AST Translation to 3AC

Generate:

• Nothing!

Propagate:

• The value for use in parent

16

a
4

ID
a

IntLit
4

AST Snippet

AST Translation to 3AC

Generate:

• Code for the LHS (recurse)

• Code for the RHS (recurse)

• The actual assignment instruction

Propagate:

• The LHS of the assignment

17
[a] := 4

a = 4

a 4

AssignExp

b = (a = 4)

a
AssignExp

b

a 4

AssignExp

a

[a] := 4

[b] := [a]

ID
a

IntLit
4

ID
b

ID
b

IntLit
4

AST Translation to 3AC

Generate:

• Code for LHS, RHS (recurse in order)

• Node’s operation kind, assigning to new temp

Propagate:

• The new temp value (for use in parent)

18

[tmp1] := 7 MULT64 [v]

7 * v 7 * v + a

7 v

tmp1

Mult

IntLit
7

ID
v

[tmp1] := 7 MULT64 [v]

[tmp2] := [tmp1] ADD64 [a]

7 v

tmp1 a

Mult

Plus

ID
a

IntLit
7

ID
v

tmp2

AST Translation to 3AC

Generate:

• (Recurse over args, left to right)

• setarg instrs for each argument

• call instr for function

• getret instr for the result

Propagate:

• The getret symbol

19

setarg 1, 7

setarg 2, [varX]

setarg 3, [tmp8]

call fn_foo

7
varX

CallExp

ID
val: foo

(Args)

AssignExp

ID
vaL k foo

tmp8

tmp9

getret [tmp9]

(Arg evaluation)

k = foo(7,varX,a+b)

7, varX, tmp8

src code snippet

k

[k] := [tmp9]

AST Translation to 3AC

Generate:

• enter quad to begin scope

• A label for function’s end

• getarg quads for each argument

• (recurse into body)

• leave quad to end scope

Propagate:

• Nothing

20

FnDecl

ID
val: fn (Formals)

a1

fn

a1, a2

enter fn

getarg 1, [a1]

getarg 2, [a2]

(body code)

a2

leave fn

void fn(int a1, int a2){

…

}

body

L_fn_end:

ID
val: a1

ID
val: a2

src code snippet

AST Translation to 3AC

Generate:

• (recurse into expression)

• setret quad for expression tmp

• goto for the function end

Propagate:

• Nothing

21

ReturnStmt

Plus

a

[tmp1] := [a] ADD64 2

setret [tmp1]

return a+2;

ID
a

IntLit
2src code snippet

2

tmp1

goto L_fn_end

AST Translation to 3AC

Generate:

• (recurse into conditional)

• An “after the body” label

• ifz to after the body label

• (recurse into body)

• nop with the new label

Propagate:

• Nothing

22

IfStmt

(body)

tmp0

[tmp0] := 9 LT64 [var]

ifFalse [tmp0] goto L_a

(body code)

L_a: nopif (9 < var){

(body code)

}

LessThan

9 var

src code snippet

AST Translation to 3AC

Generate:

• Label for loop head

• nop for loop head label

• (recurse into conditional)

• ifz to “after the body”

• (recurse into body)

• Jump back to head

Propagate:

• Nothing

23

WhileLoop

(body)

tmp0

[tmp0] := 9 LT64 [var]

ifz[tmp0] goto L_a

(body code)

L_a: nop
while (9 < var){

(body code)

}

Cond
(9 < var)

9 var

goto L_head

L_head: nop

src code snippet

AST Translation to 3AC

Generate:

• Assign address of
expression to a new temp

Propagate:

• New temp

24

ID
b

tmp2

[tmp1] := [b]

tmp2 := r @ a

record R{

int a;

}

…

R r;

r.a = 1;

ID
a

IndexExp

src code snippet

AST snippet

3AC snippet

tmp1

3AC Translation

The basic idea:

• Traversing the AST

Example Nodes:

• Node to quad translations

Implementation details:

• Operations and operators

25

Intermediate
Representations

AST Translation to 3AC: Implementation

26

• One class per 3AC node type
• Often referred to as “Quads” – has at most 4 fields (+ label)

• Each procedure maintains a list of its quads

tmp1 aL1 - 2

dst src1 opr src2lbl

AST Translation to 3AC

27

AssignExp

ID
val: a
Sym: 𝛼 IntLit

7
Sub

Plus

AssignStmt

ID
val: a
Sym: 𝛼

ID
val: v
Sym: 𝛽

tmp1

(𝛾)
a

(𝛼)
SUB
64

v
(𝛽)

dst src1 opr src2lbl

Symbol:
Kind: var
Type: int
Name: a

Symbol:
Kind: var
Type: int
Name: v

𝛼 𝛽 Symbol:
Kind: tmp
Type: int

Name: tmp1

𝛾 Symbol:
Kind: tmp
Type: int

Name: tmp2

𝛿

a = 7 + (a – v)

tmp2

(𝛿)
7

ADD
64

tmp1
(𝛾)

a

(𝛼)
tmp2

(𝛿)
ASG
64

src code snippet

𝛼

LIT64: 7

𝛼 𝛽

Quads
AST

Sub

Plus

AssignExp

AST Translation to 3AC

tmp1

(𝛾)
a

(𝛼)
SUB
64

v
(𝛽)

dst src1 opr src2lbl

tmp2

(𝛿)
7

ADD
64

tmp1
(𝛾)

a

(𝛼)
tmp2

(𝛿)
ASG
64

QuadsAt this point, we can discard
the AST

• New data structures for the
3AC representation:
• Quad class (with subclasses

for each quad type)

• Procedure class
• Contains list of quads

• Operand abstraction
(symbols)

tgt

src

3AC Translation

We’ve successfully flattened
the AST

• Got a nice target for final
code generation

• Removed the nesting

• Make execution order
explicit

Next time

• Start exploring the
compiler targets

29

C Rust Haskell

X64 MIPS WebASM

IR

The multicompiler concept
One IR for many sources, many targets

AST Translation to 3AC

30

A Nice Linear IR

• Gets us close to real hardware

• Abstract enough to be used in a
variety of backends

