Check-In

Review: Types

Give an example of a C program that uses type coercion.

Administrivia

Housekeeping

* P3 deadline tonight
* P4 released “Saturday morning”, i.e. Tonight @ 11:59 PM + 1 minute

e Unlver5|ty of Kansasl Drew DaV|dson

7 /j

L n ' n" ! !ﬁr'— n‘<

CONSTRUCTION

& -
.
- >
.
-
-
-
- - - ot I
- »
-
.
-
-
- - o~
-
2 .

-
Type Ana\y5|5

Last Lecture

Review: Type Systems

Discuss Type Systems

 What they are

* Why we use them

Type Specification (optional)

* How we communicate type systems

/ You Should Know \

 What a type system is
* How type systems
effect semantics

o /

Semantics

Today’s Outline

Type Analysis

Enforcing Type Systems

* Design points

Type Analysis

* Type checking

* Type inference / synthesis

e
L=

Semantics

Enforci ing g Type Systems

Type Analysis

Language property: how much
enforcement / checking to do?

* |dea 1: check what you can, allow
uncertainty

* |dea 2: check what you can, disallow
uncertainty completely

* |dea 3: check what you can, force
user to dispel uncertainty

Escaping the Type System

Enforcing Types

Some languages allow an explicit
means to “escape” the type system

* Typecasting — allow one type to be used as
another type

Casting Within Hierarchy

Enforcing Types

Cross-casting (static check in Java)

Apple a = new Apple(); Class Hierarchy
Orange o = (Orange)a;
Downcasting (dynamic check in Java) { Fruit }

Fruit £ = new Apple();

1f (rand()) {
f = new Orange() ; { Orange }

}
Apple dApp = (Apple) f;

Casting Within Hierarchy

Enforcing Types

Cross-casting (static check in Java)

Apple a = new Apple(); Class Hierarchy
Orange o = (Orange)a;
Downcasting (dynamic check in Java) { Fruit }

® Fruit £ = new Apple();

¢ 1f (rand()) {

¢ !

o&Apple dApp = (Apple) f;
vor

Strongly-Typed vs Weakly-Typed

Enforcing Types

Colloquial classification of
a language’s type system

 Degree to which type errors
are allowed to happen at
runtime

 Continuum without precise
definitions

10

Type Safety

Enforcing Types

Has a precise definition

— All successful operations must be
allowed by the type system

Java was explicitly designed to
be type safe

— A variable of some type can only
be used as that type without
causing an error

C is very much not type safe
C++ isn’t either but it is safer

11

Type Safety Violations

Type Enforcement

C

Format specifier
printf (“%s”, 1);

Memory safety
struct big{

int a[%OOQOOO];
by
struct big * b =

malloc (1) ;

C++

Unchecked casts

class Tl { char a };

class T2 { int b };

int main {
Tl * myTl = new T1();
T2 * myT2 = new T2();
myTl = (T1*)myT2;

12

Type Research

Detour: Ungraded Material

Research on Types

Type Checking

A huge topic in and of itself

* Some CS Deparments have a “PLT”
focus: “Programming Languages and
Types”

DETOUR

Liquid Types*

M. Rondon

University of Califor

Ming Kawaguchi

Ranjit Jhala

San Diego

{prondon, mwookawa, jhala } @cs ucsd edu

Abstract

We present Logically Qualified Data Types, abbreviated to Liguid
a system that combines Hindley-Milner type inference with
Predicate Abstraction 10 automatically infer dependent types pre-
i iety of safety properties. Ligquid types
allow programmers to reap many of the benefits of dependent
types, namely static verification of critical properties and the elim-
ination of expensive run-time checks, without the heavy price of
manual annotation. We have implemented liguid type inference in
DSOLVE, which takes as input an OCAML program and a set of log
ical qualifiers and infers dependent types for the expressions in the

OcaML program. To demonstrate the utility of our approach, we
describe experiments using DSOLVE to statically verify the safety

of array accesses on a set of OCAML benchmarks that were pre:
ously annotated with dependent types as part of the DML project.
‘We show that when used in conjunction with a fixed set of array
bounds checking qualifiers, DSOLVE reduces the amount of man-
ual annotation required for proving safety from 31% of program
text to under 1%

Categories and Subject Descriptors D24 [Software Engineer-
ing]: Software/] am Verification; F.3.1 [Logics and Meanings
of Programs): Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Reliability, Verification

Keywords Dependent Types, Hindley-Milner, Predicate Abstrac-
tion, Type Inference

1. Introduction

Modern functional programming languages, like ML and Haskell,
have many features that dramatically improve programmer produc-
tivity and software reliability. Two of the most significant are strong
which detects a host of errors at compile-time. and
nference, which (almost) eliminates the burden of annotating
m with type information, thus delivering the benefits of
strong static typing for free.

*This work was supported by NSF CAREER grant CCF-0644361, NSF
PDOS grant CNS-0720802, NSF Collaborative grant CCF-0702603, and a
gift from Microsoft Rescarch.

Permission o make digital or hard copies of all o part of this work for personal o¢
classroom use is granted withou fee provided that copies are not maie or disiribuled
oo profit oc commerc il advantige and thal copses bear this motice and the full citaton
on the first page. To copy otherw e, to republish, 10 post on servers or to redistribute
o lists, requires: prior specific permission and/or a fee

PLDI0S, June 7-13, 2008, Tocson, Arizona, USA

Copyright () 2008 ACM 978-1-59593-B60-20806. . §5.00.

The utility of these type sysiems stems from their ability 1o pre-
dict, at compile-time, invariants about the run-time values com-
puted by the program. Unfortunately, classical type systems only
capture relatively coarse invariants. For example, the system can
express the fact that a variable i is of the type int, meaning that
r, but not that it is always an integer within a
cerlain range, say between 1 and 99. Thus, the type system is un-
able to statically ensure the safety of critical operations, such as a
division by 1, or the accessi f an array a of size 100 at an index
i. Instead, the language can only provide a weaker dynamic safety
suarantee at the additional cost of high performance overhead

In an exciting development, several authors have proposed the
use of dependent types [20] as a mechanism for enhancing the
expressivity of Lype systems [14, 27, 2, 22
express the fact

fo{piint |1 <A < 99}

which is the usual type int together with a refinement stating that
the run-time value of i is an always an integer between 1 and 99.
Pfenning and Xi devised DML, a practical way to integrate such
types into ML, and demonstrated that they could be used to recover
static guarantees about the safety of array accesses, while simul-
taneously making the program significantly faster by eliminating
run-time checking overhead [27]. However, these benefits came at
the price of ic inference. In the DML about
31% of the code {or 17% by number of lines) is manual annotations
that the typechecker needs to prove safety. We believe that this non-
trivial annotation burden has hampered the adoption of dependent
types despite their safety and performance henefits

We present Lagically Qualified Data Types, abbreviated to Lig-
uiel Types, a system for automatically inferring dependent types pre-
cise enough o prove a variety of safety properties, thereby allow-
ing programmers to reap many of the benefits of dependent types
without paying the heavy price of manual annotation. The heart of
our inference algorithm is a technique for blending Hindley-Milner
type inference h predicate abstraction, a tecl
riants for imperative programs that forms the algo-
rithmic core of several software model checkers [3, 16,4, 29, 17].
Our system takes as input a program and a set of lagical gualifiers
which are simple boolean predicates over the program variables, a
special value variahle v, and a special placeholder variable + that
can be instantiated with program variahles. The system then infers
liguid types, which are dependent types where the refinement pred-
icates are conjunctions of the logical qualifiers.

In our system, type checking and inference are decidable for
three reasons (Section 3). First, we use a conservative but decidable
notion of subtyping, where we reduce the subtyping of arbitrary
dependent types to a set of implication checks over base types,
deemed to hold if and only if an embedding of
ion into a decidable logic vields a valid formula in

an expression has a valid liquid type derivation
only if it has a valid ML type derivation, and the dependent type

14

Refinement Types

Type Checking

* A type enhanced with a predicate which must hold for
any element of that type

f: N > {n:N|n%2 = 0}

* Could imagine enhancing a type system with
annotations for all kinds of properties
* Single-use variable
* High security/low security (non-interference)

[DETOUR

e

—

More Research on Types [pETOUR

Type Checking

BUZZFQED News Quizzes Tasty A Bgviews More -

You like so
also doesn’t

hlentiis;ajpursued interestéIn‘other wqrds
ing that'you're willing to practice, you'ca

16

Piggybacking on Type Checkin [pETOUR

aEE——

Type Checking

* Type checking is a good ‘ w8
place to get extra el
programmer hints: > é L) ' |3

- Programmers are already | '
familiar with typing logic ‘f V _
- The analysis is already

well-formulated — i ‘ Q

17

Formal Type Systems

End Detour: Done with Ungraded Material

Reasons for Typing

Type Checking

Generate appropriate code for operations

+/B
‘;p String concatenation? Integer addition? Floating-point
addition
Catch runtime errors / security

* Make sure operations are sensible
* Augment type system with addition checks

Types In Action

Type Checking

Type Analysis
* Assigning types to expressions

e Flavors:

* Type synthesis — get type of an AST
node from it’s children

* Type inference — get type of an AST
node from it’s use context

Type Checking

* Ensure that type of a construct is
allowed by the type system

20

Implementing Our Type Checker

Type Checking

Hmpﬂem@nt ing Typing

Our Type System

Structurally similar to nameAnalysis
 Historically, intermingled with nameAnalysis
* Done as part of AST attribute “decoration”
Add a typeCheck method to AST nodes

* Recursively walk the AST checking subtypes
* “Inside out” analysis
» Attach types to nodes
* Propagate an error symbol

Binary Operators

Implementing Static Typing

e Get the type of the LHS
* Get the type of the RHS

* Check that the types are
compatible for the PlusNode
operator

e Set the kind of the node Ihs rhs
be a value

(int)

(int) (int)

 Set the type of the node
to be the type of the
operation’s result

Literals

Implementing Static Typing

* Cannot be wrong

* Just pass the type of the
literal up the tree

(int)

24

Variables

Implementing Static Typing

* Look up the type of the
declaration

 There should be a
symbol “linked” to the
node

* Pass symbol type up the

mySymbol

tree [

Kind: VAR
type: int

Name: “v”

(int)

25

Function Calls

Implementing Type Checking

* Get type of each actual (bool)

* Match against formals of the
called function’s symbol FnCallNode

* Propagate return type to
parent node myiD

(int,int =bool)

args
(int,int)

mySymbol IDNode ActualsList

Kind: Func
Type: int,int = bool

Name: “greaterThan”

26

Statements

Implementing Type Checking

Always have void type (void)

* Make sure to check child expression OutputStmt
* No type to propagate

(int)
* Some versions of analysis may propagate PlusNode

boolean: error / no error)
int

mySymbol

Kind: VAR
type: int

Name: “v”

27

Other AST Node Types

Implementing Type Checking

Follow these same principles
* Ensure that children are well-typed

* Apply a combination rule
* |f valid: infer a type and propagate out
* If invalid: propagate error

Exercise: Draw Type Analysis

Bonus Exercise

oy U x WO N

. 1nt a;
. bool £;
. int m(int arqg) {

int b;
return arg + 1;

.

29

Handling Errors

Implementing Type Checking

e We'd like all distinct errors at
the same time
* Don’t give up at the first error

* Don’t report the same error
multiple times

 When you get error as an
operand
 Don’t (re)report an error
e Again, pass error up the tree

probies has Deen detected and windows Pas been shut Gown To prevess damage
mputer

A MOT LESS, OF_COUAL
the FirsT tise you've seee This

o computer, If this soreom appe

surd any néw hardwire or softwire 15 progerly fedtalled.
15 & nov Tl lanian, aik your Brdwird O softvics sdeufalturesr
O Mty Windowd updites you mighs moed,

owly Srstalled hardware
shydovin

crhy Q.
LS, rastart
S, 00 THA

2, 000200000, ERLaSAR))

55 FEGETAES base at PRSS000, Oatessamp 3d99%ied

Eeginntng «

31<a)
hysical masory Oump complete,
CC your Systes adwinfstrater o tachnical support group Tor furthee

30

Operator Errors vs Operand Errors

Implementing Type Checking

The difference between...

true + false Neither operand works with the operator
error error

.. and

These operands could work with the operator
true == '/ ..buttheydon’t work with each other
error

31

Type Error Example

int a; Implementing Type Checking

bool b; StmtList

/\/\ AssignStmt

REPORT

a = true + 1 + 2 + Db;

b = 2; AssignStmt

error

error

AssignExp Kg‘ W AssignExp
error o\

IdNode SV REPQ / —

int int

\ IdNode IntLit
\o©
5\\((\
S N
type: int IdNode W2
[ybe:!] 2 S
name: a o [
int
REPORT Plus IntLit [type: bool]
2 name: b

bool int

IntLit

BoolLit

1

true

32

Lecture Summary

Wrap-Up: Typechecking

* We'd like all distinct errors at the same time
* Don’t give up at the first error
* Don’t report the same error multiple times

* When you get error as an operand
e Don’t (re)report an error
e Again, pass error up the tree

Next Time

Preview: Error Reports

Having explorer two semantic analyses, let’s generalize
* What’s the limit of semantic analysis, especially error checking?

35

	Slide 1: Check-In Review: Types
	Slide 2: Administrivia Housekeeping
	Slide 3: Type Analysis
	Slide 4: Last Lecture Review: Type Systems
	Slide 5: Today’s Outline Type Analysis
	Slide 6: Enforcing Type Systems Type Analysis
	Slide 7: Escaping the Type System Enforcing Types
	Slide 8: Casting Within Hierarchy Enforcing Types
	Slide 9: Casting Within Hierarchy Enforcing Types
	Slide 10: Strongly-Typed vs Weakly-Typed Enforcing Types
	Slide 11: Type Safety Enforcing Types
	Slide 12: Type Safety Violations Type Enforcement
	Slide 13: Type Research Detour: Ungraded Material
	Slide 14: Research on Types Type Checking
	Slide 15: Refinement Types Type Checking
	Slide 16
	Slide 17: Piggybacking on Type Checking Type Checking
	Slide 18: Formal Type Systems End Detour: Done with Ungraded Material
	Slide 19: Reasons for Typing Type Checking
	Slide 20: Types In Action Type Checking
	Slide 21: Implementing Our Type Checker Type Checking
	Slide 22: Implementing Typing Our Type System
	Slide 23: Binary Operators Implementing Static Typing
	Slide 24: Literals Implementing Static Typing
	Slide 25: Variables Implementing Static Typing
	Slide 26: Function Calls Implementing Type Checking
	Slide 27: Statements Implementing Type Checking
	Slide 28: Other AST Node Types Implementing Type Checking
	Slide 29: Exercise: Draw Type Analysis Bonus Exercise
	Slide 30: Handling Errors Implementing Type Checking
	Slide 31: Operator Errors vs Operand Errors Implementing Type Checking
	Slide 32: Type Error Example Implementing Type Checking
	Slide 33: Lecture Summary Wrap-Up: Typechecking
	Slide 34: Next Time Preview: Error Reports
	Slide 35

