' M"ﬂ!vnn'nﬁyél
_ CONSTRUCTED

Beyond Compilers

This Time

Lecture Outline

Beyond Compilers

* Using compiler techniques for
other stuff

* Next Steps

Final Words

* What next for EECS 665
 Logistical wrap-up

Just Drew Talkin’

Compiler Techniqgues Outside Compilers

Beyond Compilation

Why Compilers Matters (maybe?)
i.e. why Drew is qualified to teach compilers

Gikk

Anything else

This Lecture

Beyond Compilation
. i | y (0 lexical)
Compiler Techniques Compiler | Analysis
. Frontend |[{- : :
¢ LEX|ng Syntactic
] X Analysis)
* Parsing
, , v [semantic |
* Syntax-Directed Translation 4 N anaes
* Semantic Analysis Middle end [t R
Y Codegen)
* IRs \ J(r)
. L Optimization)
e Architecture ' = \
re . Final Codegen
Utilities sackend ||| ° ,
¢ RE (Final Code)
X Optimization)

Compiler Techniqgues Outside Compilers

Beyond Compilation
Y (Lexical)
. Analysis)
Frontend |+ -
Syntactic
. Analysis)
v (Semantic)
4 N | Analysis
Middle end [{- R
g Codegen
_ J E (IR)
L Optimization)

E ()

Final Codegen

Back end

()

Final Code
Optimization
. J

Signature Matching

Beyond Compilers

* Regular-expression based
matching of network
traffic

e Rather than producing
tokens, produces actions

alert tcp $EXTERNAL_NET any ->
$SHTTP SERVERS $HTTP_ PORTS
(msg:"WEB-IIS cmd.exe access”;
flow:to_server, established;
content:"cmd.exe"; nocase; classtype:web-
application-attack; sid:1002; rev:5;)

Policy Automata

Beyond Compilers
not FileRead not Send
* Enforce stateful policies
on system call sequences
. o G
* Expressible via finite state V] FleRead o
automaton

Fig. 1. No Send after FileRead.

Compiler Techniqgues Outside Compilers

Beyond Compilation
Y (Lexical)
. Analysis)
Frontend |© ~ -
Syntactic
. Analysis)
v (Semantic)
4 N | Analysis
Middle end [{- R
g Codegen
_ J E (IR)
L Optimization)

E ()

Final Codegen

Back end

()

Final Code
Optimization
. J

Protocol Normalization Using AGs

Beyond Compilation

 Uses SDT to rewrite

grammar to a canonica

form
e Actually uses BISON!
* More PoC than

production-ready code

Protocol Normalization Using
Attribute Grammars

Drew Davidson!, Randy Smith', Nic Doyle?, and Somesh Jha!

! Computer Sciences Department, University of Wisconsin, Madison, W1 53706
* ERBU XE Security group, CISCO systems

Abstract. Protocol parsing is an essential step in several networking-
related tasks. For instance, parsing network traffic is an essential step for
Intrusion Prevention Systems (IPSs). The task of developing parsers for
protocols is challenging because network protocols often have features
that cannot be expressed in a context-free grammar. We address the
problem of parsing protocols by using attribute grammars (AGs), which
allow us to factor features that are not context-free and treat them as
attributes. We investigate this approach in the context of protocol nor-
malization, which is an essential task in IPSs. Normalizers generated
using smatic technigues, such as ours, are more robust and resilient
to attacks. Our experience is that such normalizers ineur an acceptable
level of overhead (approximately 15% in the worst case) and are straight-
forward to implement

1 Introduction

Parsing application-layer protocols is a fundamental step in several networking-
ed tasks. Programs that operate over application-level traffic semant|

such as systems that investigate Email traffic and Internet attacks, use a proto-
col parser as an integral component. Parsing network traffic is also an essential
step for Intrusion Prevention Systems (IPSs) because protocols allow many rep-
resentations ol the same message. Prolocol normalization is meant Lo reverse the
transformations and obfuscations that an attacker performs on a message to a
canonical form [7]. An IPS that does not perform normalization is vulnerable
to evasion attac] [I5/17]. In order to perform normalization, IPSs must know
certain Helds in a protocol, e.g., to normalize URLs an 1PS system has to extract

the URL field from HTTP traffic. In this paper we focus on protocol parsing in
the context of intrusion prevention, but the results are apphicable to related areas
such as firewalls, URL filtering, and HT'TP server load balancing.

At first glance implementing application protocol parsers seems like a straight-
forward task. One strategy would be to use standard parser generators such as
yace [9] or ANTLR [T1] to implement an application protocol parser. This strat-
egy olften does not work, however, because many protocols have constructs that
are not context-free. For example, data fields that are preceded by their actual
length (which is common in several network protocols) cannot be expressed in a
context-free grammar [T3]. In this work we consider a systematic approach to the

M. Backes and P. Ning (Eds.): ESORICS 2000, LNCS 5780, pp. 216
(@ Springer-Verlag Berlin Heidelberg 2009

Clang-Format

Beyond Compilation

e Code (re)formatter

* Ensures that all code in a
project is of a consistent
style

Compiler Techniqgues Outside Compilers

Beyond Compilation

- Lexical
i Analysis v
Frontend |1+ ’
ny \ ’ 4

Syntactic
Analysis

Semantic

4 \ X Analysis

J
s S
Middle end |- IR
g Codegen
L N
- vl IR
§ Optimization
o\ J

E ()

Final Codegen

Back end

()

Final Code
Optimization
. J

11

Static Analysis

Beyond Compilation

We did a bit already:
* Typechecking
e Data flow

We focused on faithfully
translating program

e But what about when the
program is garbage?

ANALYSIS

12

Information Leakage

Beyond Compilation

We'd like to know if a program can leak
secret/private data

* It would be good to know that before running the
program
e Use static analysis!

 Can data that comes from a sensitive source reach an
untrusted sink?

Static Instrumentation

Beyond Compilation

Add “reporting” to executables

 Test suite line coverage: |s every line of the
program exercised by the test suite?

 Taint tracking: determine if user input is ever
touching protected memory

Static Analysis: cppcheck

Beyond Compilation

Tool for common CPP errors
* Check for semantic errors /

likely logic issues %%
e Sorta like a standalone

version of the warning
phase of the compiler

Linters

Beyond Compilation

Check source code for likely bugs
e cpplint
 pylint / flake8

* bandit .[M, - ;L)

L (=3¢

/ / w l—\ .\/;H v i 2 Dryer Lint (a different kind of lint)

16

Compiler Techniqgues Outside Compilers

Beyond Compilation

v Lexical
| Analysis o
Frontend |} J
e N /
| Syntactic
| Analysis
i _ y
o .
~ | Semantic b
4 A | Analysis
BN)
G S
Middle end | IR
§ Codegen
p /
N 7t IR
| Optimization
S J

T §

Final Codegen

Back end

(a

Final Code
Optimization
\ J

17

“Old School” Virtual Machines

Beyond Compilation

Abstract hardware architecture
* Compile once, run anywhere

G e 95 Ellvay R @ python @®®

#Scala

Automatic transformation of interpreters to compiler

GraalVM

standalone
>-

Open|DK nede ORAcLE

D) Database

18

IE on FiIrmware!

Beyond Compilation

* Analyze behaviors of 100s of
related loT programs

FIE on Firmware:
Finding Vulnerabilities in Embedded Systems using Symbolic Execution

Drew Davidson Benjamin Moench

Somesh Jha Thomas Ristenpart

University of Wisconsin-Madison, { davidson,bsmoench, jha,rist}Ocs.wisc. edu

Abstract

Embedded systems increasingly use software-driven
low-power microprocessors for security-critical settings,
surfacing a need for tools that can audit the security of
the software (often called firmware) running on such de-
vices. Despite the fact that firmware programs are of-
ten written in C, existing source-code analysis tools do
not work well for this setting because of the specific ar-
chitectural features of low-power platforms. We there-
fore design and implement a new tool, called FIE, that
builds off the KLEE symbolic execution engine in order
to provide an extensible platform for detecting bugs in
firmware programs for the popular MSP430 family of
microcontrollers. FIE incorporates new technigues for
symbolic execution that enable it to verify security prop-
erties of the simple firmwares often found in practice.
‘We demonstrate FIE's utility by applying it to a corpus
of 99 open-source firmware programs that altogether use
13 different models of the MSP430. We are able to ver-
ify memory safety for the majority of programs in this
corpus and elsewhere discover 21 bugs

1 Introduction

Embedded microprocessors are already ubiquitous, pro-
viding programmatic control over critical, increasingly
Internet-connected physical infrastructure in consumer
devices, automobiles, payment systems, and more. Typ-
ical low-power embedded systems combine a software-
driven microprocessor, together with peripherals such as
sensors, controllers, etc. The software on such devices is
referred to as firmware, and it is most often written in C.

The use of firmware exposes embedded systems to
the threat of software vulnerabilities, and researchers
have recently di d exploitable i in
a wide variety of deployed embedded firmware pro-
grams [12, 18,19,21,22, 24, 27]. These bugs were found
using a combination of customized fuzz testing and man-
ual reverse engineering, requiring large time investments
by those with rare expertise.

To improve firmware security, one possible approach
would be to use the kinds of source-code analysis tools
that have been successful in more traditional desktop and
server settings (e.g., [2.4,8,9,11,13,17,26, 28, 31, 36]).
These tools, hawever. prove insufficient for analyzing

firmware: the microcontrollers used in practice have a
wide range of architectures, the nuances of which frus-
trate tools designed with other architectures in mind
(most often x86). Firmware also exhibits characteris-
tics dissimilar to more traditional desktop and server pro-
grams, such as frequent interrupt-driven control flow and
continuous interaction with peripherals. All this suggests
the need to develop new analysis tools for this setting.

We initiate work in this space by building a system,
called FIE, that uses symbolic execution to audit the se-
curity of firmware programs for the popular MSP430
family of 16-bit microcontrollers. We have used FIe
to analyze 99 open-source firmware programs written
in C and of varying code complexity. To do so, FIE
had to support 13 different versions of the MSP430
family of 16-bit RISC processors. Our analyses ulti-
mately found 20 distinct memory-safety bugs and one
peripheral-misuse bug.

We designed FIE to support analysis of all potential
execution paths of a firmware. This means that, modulo
standard but important caveats (see Section 6), FIE can
verify security properties hold for the relatively simple
firmware programs often seen in practice. For example,
we verify memory safety for 53 of the 99 firmware pro-
grams in our corpus.

Overview of approach: FIE is based on the KLEE sym-
bolic execution framework [10]. In addition to the en-
gineering efforts required to make KLEE work at all for
MSP430 firmware programs, we architected FIE to in-
clude various features that render it effective for this new
domain. First, we develop a modular way to specify the
memory layout of the targeted MSP430 variant, the way
in which special memory locations related to peripherals
should be handled, and when interrupt handlers should

USENIX Association

22nd USENIX Security Symposium 463

19

Compiler Techniqgues Outside
Compilers

Beyond Compilation

(N\

Y Lexical Q //'
i Analysis
Frontend |} ’
ny \ V4
g Syntactic 4
i Analysis
\\ J
i e N /
v ; Semantic VW 4
4) 5 Analysis
E \\ J
s N /
Middle end || IR
g Codegen '
i 4
- | IR ,,"(

i Optimization
. o J/

E ()

Final Codegen

Back end

()

Final Code
Optimization
. J

Assembly Code: Low Leve| Securi

e Buffer overflows

* ROP
* Blind ROP

Beyond Compilation

Hacking Blind

Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazitres, Dan Boneh

Stanford University

Abstract—We show that it is possible to wrile remote stack
buffer overflow exploits without possessing a copy of the target
binary or source code, against services that restart after a crash.
This makes it possible to hack propriets
or op: ce Servers ally ¢
source where the binary remains unknown to the attacker. Tra-
ditional techniques are usually paired against a particular binary
and distribution where the hacker knows the location of useful
gadgets for Return Oriented Programming (ROP). Our Blind
ROP (BROP) attack instead remotely finds enough ROP gadgets
to perform a write system call and transfers the vulnerable
binary over the network, after which an exploit can be completed
using known techni This is i by leaking a
single bit of information based on whether a process crashed
or not when given a particular input string. BROP requires a
stack vulnerability and a service that restarts after a crash. We
implemented Braille, a fully automated exploit that yielded a shell
in under 4,000 requests (20 mi against a ary
nginx vulnerability, ya$SL + MySQL, and a toy proprietary
server written by a colleague. The attack works against modern
64-bit Linux with address space layout random on (ASLR),
no-execute page protection (NX) and stack canaries.

1 INTRODUCTION

Attackers have been highly successful in building exploits
with varying degrees of information on the target. Open-source
software is most within reach since attackers can audit the code
to find vulnerabilities. Hacking closed-source software is also
possible for more motivated attackers through the use of fuzz
testing and reverse engineering. In an effort to understand an
attacker’s limits, we pose the following question: is it possible
Jor anackers 1o extend their reach and create exploits for
proprietary services when neither the source nor binary code
is available? At first sight this goal may seem unattainable
because today’s exploits rely on having a copy of the target
binary for use in Return Oriented Programming (ROP) [1].
ROP is necessary because, on modern systems, non-executable
(NX) memory protection has largely prevented code injection
attacks.

To answer this question we start with the simplest possible
vulnerability: stack buffer overflows. Unfortunately these are
still present today in popular software (e.g., nginx CVE-2013-
2028 [2]). One can only speculate that bugs such as these
go unnoticed in proprictary software, where the source (and
binary)y has not been under the heavy scrutiny of the public
and security specialists. However, it is certainly possible for
an attacker to use fuzz testing to find potential bugs through
known or reverse engineered service interfaces. Alternatively,
attackers can target known vulnerabilities in popular open-
source libraries (e.g.. SSL or a PNG parser) that may be used
by proprietary services. The challenge is developing a method-
ology for exploiting these vulnerabilities when information
about the target binary is limited.

One advantage attackers often have is that many servers
restart their worker processes after a crash for robustness. No-
table examples include Apache, nginx, Samba and OpenSSH.
‘Wrapper scripts like mysgld safe.sh or daemons like
systemd provide this functionality even if it is not baked into
the application. Load balancers are also increasingly common
and often distribute connections to large numbers of identically
configured hosts executing identical program binaries. Thus,
there are many situations where an attacker has potentially
infinite tries (until detected) to build an exploit.

We present a new attack, Blind Return Oriented Program-
ming (BROP), that takes advantage of these situations to build
exploits for proprietary services for which both the binary
and source are unknown. The BROP attack assumes a server
application with a stack vulnerability and one that is restarted
after a crash. The attack works against modern 64-bit Linux
with ASLR (Address Space Layout Randomization), non-
executable (NX) memory, and stack canaries enabled. While
this covers a large number of servers. we can not currently
target Windows systems because we have yet to adapt the
attack to the Windows ABI. The attack is enabled by two new
techniques:

1) Generalized stack reading: this generalizes a known
technique, used to leak canaries, to also leak saved
return addresses in order to defeat ASLR on 64-bit
even when Position Independent Executables (PIE)
are used.

2) Blind ROP: this technique remotely locates ROP
gadgets.

Both techniques share the idea of using a single stack
vulnerability to leak information based on whether a server
process crashes or not. The stack reading technigue overwrites
the stack byte-by-byte with possible guess values, until the
correct one is found and the server does not crash, effectively
reading (by overwriting) the stack. The Blind ROP attack
remotely finds enough gadgets to perform the write system
call, after which the server’s binary can be transferred from
memory to the attacker’s socket. At this point, canaries, ASLR
and NX have been defeated and the exploit can proceed using
known techniques.

The BROP attack enables robust, general-purpose exploits
for three new scenarios:

Iy Hacking proprictary closed-binary services. One may
notice a crash when using a remote service or dis-
cover one through remote fuzz testing.

2) Hacking a wulnerability in an open-source library
thought to be used in a proprietary closed-binary
service. A popular SSL library for example may have

21

Decompilation

Beyond Compilation

Run the compiler
toolchain in reverse

* Binary to assembly
(disassembler)

* Assembly to source
(decompiler)

22

Decompilation

Beyond Compilation

Popular tools

Run the compiler

toolchain in reverse (Commercial) (Free)
* Binary to assembly DA PP
(disassembler)
Ghidra
* Assembly to source
Hex Rays

(decompiler)

Reverse Enﬁn@@rﬁn Tools

Beyond Compilation

IDA Pro

* Long considered the best
and tool by default

* Builds CFG from binary
Ghidra Hex Rays
* Developed by the NSA

* Released (open source)
April 4, 2019

24

"W IDA - C:A\Users\Danie

Edit Jump Search View Debugger

Reverse Eng

File Options
A e TS B 3w

-

Windows
@@ chohuhFvie X p O O|windgdetugger

Help

(o}

l]

neering Tools

| Compilation

- A

|E|Functi0ns wincoy g X | RIDA Yiew-a, Exports, Imports @ l @ Hex Yiew-£ I IE Struchures I [j Enuims
Function name %= [F] D& Wiew-a B X [Exports g8 x
(7] start |_| test edx, edx Mame
[7] sub_0_401100 jle short loc_@ 481859 loc_8_481861:
- ,] start
[7] sub_0_401140 | [EesE Gl @G
7] sub_0.401730 jle short loc_8_481895) . . :
sub_0_4017C0 _* |
7] sub_0_4018A0 == - = e
(7] sub_0 402520 mou ecx, [ebp+var 18] mov ecx, [ebprvar 18] | Irnports g X
£ sub_0_402600 & e esi, esi Xor esi, esi =
g NS nou eax, [ebpruvar_ 28] nov edx, [ebp+var_28] Address Ord Mame s
< | 1 | 3 lea ebx, [eax+ecx=h] mov eax, [ebp+var_ 18] 0040F128 _ermao |
Line 5 of 103 mov ecx, [ebprvar_30] 2dd eax, [ebpruar_18] FE 0040FL2C _ getreent =
R 5 Tea ebx, [edxrecke] 55l 0040F130 main
Graph overview , +ECK* 5 T -
& lea ecx, [edxz+eax=h] To: sub_B 4817C8:Toc_8 48189503, _ mb_cur_max
e esi, [esi+0] loc_6_461895: F138 Chype_
sub [ebp+var_18], edi F13C _dll_crtd@0
¥ L] jmp loc_8_4B17F2 i
Ded & D o3 & cub_@ 4617CH endp B —.em
e ooeaF 144 _impure_ptr
loc_0_401843: loc_0_401880: 0040F148 abort
mou ed=, [ebx] mnov edx, [ebx] = ;
add esi, 1 add esi, 1 W TG atexit
mou eax, [ecx] moy eax, [ecx] 0040F150 calloc
mow [ebx], eax nov [ebx], eax 0040F154 cygwin_internal
add ebx, 4 add ebx, 4 =] -
mow [ecx], edx nov [ecz], edx M]SB exit
add ecx, 4 add ecx, 4 | P
100.00% (27,1157 (54&,151) 00000CSS 00401898: sub O 4017CO+DE Line 1 of 47
g X

Output window

Sawple IDC plugin:

term()] has been called

init () called! pe
Ceema A e

Pythion

AU: idle Down

25

Reverse Engineering Tools: Why?

Beyond Compilation

IP theft

(duh)

Ok, but what /egit uses?
* Malware analysis

* Code “improvements” i B

26

Compiler Techniqgues Outside Compilers

Beyond Compilation
Y : Lexical N 4
! Analysis -
: . J
Frontend |- /
E (N\
g Syntactic QF
i Analysis -
: . J
i e N /
v § Semantic)
4) 5 Analysis
E \\ J
e N /
Middle end |{- IR N 4
| Codegen v
LS ’ /
H 4 N\
- | IR Y .
§ Optimization v
N J
T \ /
Final Codegen | "
Back end
()
Final Code :
. Optimization) p

27

The End

..OR IS IT?

Where to go Next

Next Steps

Our compiler gives you a
basic foundation:

* There’s more to nearly
every area of the course
than what we covered

WHEBE 10

* Hopefully this course
serves as a framework for
refinement

29

What We Dian’t Cover

Next Steps

Topics we glossed over:
* Object oriented code
* Many optimizations

* Compiling non-imperative code
e Logic programming (e.g. datalog)

* Functional programming (Haskell
et al)

We glossed over some topics

30

s this Stuff Usetul?

Next Steps

From what we’ve covered:

* | bet you have could
Invent a programming
language

* | hope you have a deeper
understanding of how
programs work

* | think you gained some
tools in your toolbelt

31

Continuing the Journey

Beyond Compilation: Next Steps

If you like compiler construction

Compilers
Classic compilers texts S Sy
« Compilers: Principles, Techniques A Ry T

and TOOIS SRR e O g IMPLEMENTATION
 Aho, Lam, Sethi, and Ullman W,

e Advanced Compiler Design &
Implementation

* Munchnick

* Crafting a Compiler
* Fischer and Cytron

Cutting Edge Developments

* SIGPLAN Proceedings
* LLVM Docs

Crafting

32

Continuing the Journey

Beyond Compilation: Next Steps

If you like compiler construction If you dislike compiler construction

Classic compilers texts
* Compilers: Principles, Techniques
and Tools
 Aho, Lam, Sethi, and Ullman

e Advanced Compiler Design &
Implementation

* Munchnick

* Crafting a Compiler
* Fischer and Cytron

Cutting Edge Developments
* SIGPLAN Proceedings
* LLVM Docs

33

Maybe the real Compilation...
was the friends we made along the way

Regular Lexical Context-Free Syntactic Syntax-Directed
Languages Analysis Grammars Analysis Translation

. i S D
Semantic Intermediate Hardware Machine Optimization /
Analysis Representations Architecture Code Program Analysis

Unfinished Business

My Final Words

Grades:

* Project Grades forthcoming
Curve:

* Projects may be individually curved

* Minimal curve will be out in time for the
final

Official Course Evaluations

My Final Words

Your chance for a performance review
* | review these every semester

* The department chair reviews these
every semester

Please do them!

* There are 2 surveys
* University
* Department

36

Unofficial Course Evaluations

My Final Words

https://compilers.cool/final-survey

Things you should know:

e Still completely anonymous

* | won’t look at the responses until after grades are assigned
Less about absolutes than improvement:

* Don’t worry about my feelings

e Just for me (though | might pull quotes for future semesters)

37

https://compilers.cool/final-survey

A World of Thanks! = Google
world of thanks X

ALL IMAGES VIDEOS SHOPPING NEWS M

 Special thanks to people
who asked/answered
questions in class or on S

Piazza Online game

Did you mean: world of tanks

* Extra special thanks to
people who suggested
improvements and gave
feedback

OVERVIEW VIDEOS SONGS SIMILAR GAMES

No Google. I did not mean “World of Tanks” 25

	Slide 1: Beyond Compilers
	Slide 2: This Time Lecture Outline
	Slide 3: Compiler Techniques Outside Compilers Beyond Compilation
	Slide 4: This Lecture Beyond Compilation
	Slide 5: Compiler Techniques Outside Compilers Beyond Compilation
	Slide 6: Signature Matching Beyond Compilers
	Slide 7: Policy Automata Beyond Compilers
	Slide 8: Compiler Techniques Outside Compilers Beyond Compilation
	Slide 9: Protocol Normalization Using AGs Beyond Compilation
	Slide 10: Clang-Format Beyond Compilation
	Slide 11: Compiler Techniques Outside Compilers Beyond Compilation
	Slide 12: Static Analysis Beyond Compilation
	Slide 13: Information Leakage Beyond Compilation
	Slide 14: Static Instrumentation Beyond Compilation
	Slide 15: Static Analysis: cppcheck Beyond Compilation
	Slide 16: Linters Beyond Compilation
	Slide 17: Compiler Techniques Outside Compilers Beyond Compilation
	Slide 18: “Old School” Virtual Machines Beyond Compilation
	Slide 19: FiE on Firmware! Beyond Compilation
	Slide 20: Compiler Techniques Outside Compilers Beyond Compilation
	Slide 21: Assembly Code: Low Level Security Beyond Compilation
	Slide 22: Decompilation Beyond Compilation
	Slide 23: Decompilation Beyond Compilation
	Slide 24: Reverse Engineering Tools Beyond Compilation
	Slide 25: Reverse Engineering Tools Beyond Compilation
	Slide 26: Reverse Engineering Tools: Why? Beyond Compilation
	Slide 27: Compiler Techniques Outside Compilers Beyond Compilation
	Slide 28
	Slide 29: Where to go Next Next Steps
	Slide 30: What We Didn’t Cover Next Steps
	Slide 31: Is this Stuff Useful? Next Steps
	Slide 32: Continuing the Journey Beyond Compilation: Next Steps
	Slide 33: Continuing the Journey Beyond Compilation: Next Steps
	Slide 34: Maybe the real Compilation…
	Slide 35: Unfinished Business My Final Words
	Slide 36: Official Course Evaluations My Final Words
	Slide 37: Unofficial Course Evaluations My Final Words
	Slide 38: A World of Thanks!

