
Check-in
Review: Dataflow

1

Give an example of a forward dataflow analysis and an example of a
backward dataflow analysis.

Announcements
Review: Dataflow

2

Abstract Interpretation

Drew Davidson | University of Kansas

3

Previously…
Review: Dataflow

Global Dataflow analysis

• Intuition

• Operations

4

You should know
• The basic concepts of dataflow facts

- Backwards and Forward analysis
- Augment local analysis with “IN” and “OUT” sets
- You need to merge fact sets

Optimization

Merging Fact Sets
Dataflow Intuition

Fact sets may be different when multiple
successors/predecessors join

• Need to merge incoming fact sets

Merge as conservatively as possible

• Don’t do anything without a guarantee!

• Plan for all possible flows

Example: is L3 live? (consider both block paths)

• L3 definition clobbered on the fallthrough
branch (at L5)

• L3 definition not clobbered on the jump branch

5

[b] := 4 * [a]

leave

ifz [a] goto L7

enter

getarg 1, [a]

jmp

L1:

L2:

L4:

L5:

L9:

L8: OUTPUT [b]

getarg 2, [b]L3:

a: , b:

a: , b:

a: , b:

a: , b:

a: , b:

a: , b:

a: , b:

a: , b:

a: , b:

a: , b:

Today’s Outline
IR Optimization

Rounding out dataflow analysis concepts

• Some more examples

• Considering more complex code

• Dataflow Framework

Abstract Interpretation

• Concepts

• Examples

6

Optimization

Refresh Constant/Copy Propagation
Dataflow: Formalization

Copy Propagation

7

Constant folding

x := 1

z := x + y

y := x

x := 3

x := 1

z := 1 + 1

y := 1

x := 3

x := 1

z := 1 + 1

y := 1

x := 3

x := 1

z := 2

y := 1

x := 3

• Replace RHS of simple assigns
with value of assign (if known)

• Forward analysis

• Replace constant RHS
expressions with value

• Traversal order isn’t important

Example Analyses
Dataflow: Formalization

Dead Code Elimination

• Backwards analysis

• Fact sets: the liveness of
each variable

• Merge:

8

Constant Propagation

• Forward analysis

• Fact sets: the known value of
each variable

• Merge:

Known
Live

Known
Dead

Not Enough
Info

Set of Known Values Not Enough
Info

{<value>, <value2}, …

∪ =

∪ =

∪ =

Set Union

…except

=∪{ * }

{ 1 } ∪ { 1,2 } = { 1,2 }

Example Constant Propagation
Dataflow: Formalization - Example

9

[x] := 2

ifz [t2] goto B4

B2:

[x] := 0

B5:

[x] := [y]

ifz [t3] goto B6

B4:

x := 2

x := 0

goto B6

B3:

[y] := 0

ifz [t1] goto B2

B1:

[z] := [x]

B6:

jmp

jmp

jmp

jmp

What values can x take on at B6?

0

B2 x y z
IN

OUT

B1 x y z
IN

OUT {0}

{0}

{0}{2}
B3 x y z
IN

OUT {0}

{0}

{0}

B5 x y z
IN

OUT

{0}

{0}{0}

B4 x y z
IN

OUT {0}

{0}

{0}

{2}

{0,2}

B6 x y z
IN

OUT {0}{0}

{0}

{0}

{0}

Today’s Outline
IR Optimization

Rounding out dataflow analysis concepts

• Some more examples

• Considering more complex code

• Instantiating Dataflow Framework

Abstract Interpretation

• Concepts

• Examples

10

Optimization

Handling Practical Programs
Global Dataflow: Formalization

Global variables

• We only have visibility into 1 procedure

• Be conservative about the effect of other
procedures
• Reset fact sets across a call

• Consider global variables live at function end

11

Analysis Termination
Dataflow: Formalization

In the previous examples, we
completed in one pass over the
CFG

• This won’t always be the case,
due to a fundamental construct…

12

Analysis Termination
Dataflow: Formalization

In the previous examples, we
completed in one pass over the
CFG

• This won’t always be the case,
due to a fundamental construct…

• Loops (specifically back edges)
create cyclic dependencies

13

Oh bröther, you might have some lööps

loops

Loops: Dependency cycles
Dataflow: Formalization

Solution: Saturate fact sets

• Start sets “TBD” () value

• Run the algorithm until sets don’t
change

We’ve seen the saturation
approach before

• (FIRST and FOLLOW sets)

14

ifz rand() goto B3

B2:

jmp [x] := 3

[y] := [x]

IN(B2) requires knowing OUT(B2)

OUT(B2) requires knowing IN(B2)

Constant propagation

B1: enter

 [x] := 3

B3: [t1] := [x] + [y]

 setret [t1]

 leave

B1 x y
IN

OUT

B2 x y
IN

OUT

B3 x y
IN

OUT

B1 x y
IN

OUT {3}

B2 x y
IN

OUT

B3 x y
IN

OUT {3}

{3}

B1 x y
IN

OUT {3}

B2 x y
IN

OUT

{3}

{3}

B3 x y
IN

OUT

{3} {3}

{3} {3}

{3}{3}

Handling Practical Data Abstractions
Global Dataflow: Formalization

Undefined Behavior

• Could we fold y + 3?

15

int main(){

 int x,y;

 if (x == 4){

 y = 1;

 }

 return y + 3;

}

Ain’t no law against it!

ifz [t1] goto B3

B1:

[t1] := [x] LT64 4

enter

B2: [y] := 1

B3: [t2] := [y] + [3]

 setret [t2]

 leave

B1 x y
IN

OUT

B2 x y
IN

OUT

B1 x y
IN

OUT

jmp

B2 x y
IN

OUT {1}

B1 x y
IN

OUT

{1}

{1}

4

Would need
to have types
of unknowns

Today’s Outline
IR Optimization

Rounding out dataflow analysis concepts

• Some more examples

• Considering more complex code

• Instantiating Dataflow Framework

Abstract Interpretation

• Concepts

• Examples

16

Optimization

Complicated Fact Sets
Dataflow: Formalization

17

• Constant
propagation: once
we have > 1 value
in a set, we don’t
really care what the
values are

• Change the domain
of values to match
what we can learn /
use in analysis

Occasionally, fact
sets exceed their
usefulness, e.g.:

Complicated Fact Sets
Dataflow: Formalization

18

ifz [x] goto B3

B1:[x] := INPUT

B2: [y] := [y] + 1

 goto B1

B3: setret [y]

 leave

jmp

B0:enter

[y] = 0

jmp

B0 x y
IN

OUT

B1 x y
IN

OUT

B2 x y
IN

OUT

B3 x y
IN

OUT

• Constant
propagation: once
we have > 1 value
in a set, we don’t
really care what the
values are

• Change the domain
of values to match
what we can learn /
use in analysis

Occasionally, fact
sets exceed their
usefulness, e.g.:

Complicated Fact Sets
Dataflow: Formalization

• Constant
propagation: once
we have > 1 value
in a set, we don’t
really care what the
values are

• Change the domain
of values to match
what we can learn /
use in analysis 19

Set of Known
Values

We Don’t
Know

{1}, {1,2}, …

Single Constant
Value

We Don’t
Know

Could be
Anything

1, 2, 3, …

Before

After

⊥⊥

Allows
“ranking” fact

sets

Occasionally, fact
sets exceed their
usefulness, e.g.:

Ranking Fact Sets
Dataflow: Formalization

20

Set of Known
Values

We Don’t
Know

{1}, {1,2}, …

Single Constant
Value

We Don’t
Know

Could be
Anything

1, 2, 3, …

Before

After

⊥⊥

⊥

{ -1 } { 0 } { 1 } { 2 }{ -2 } ……

⊥

Values form a lattice

Values merge to their least upper bound

Reaching a Fixpoint
Dataflow: Formalization

21

⊥

{ -1 } { 0 } { 1 } { 2 }{ -2 } ……

⊥

Values form a lattice

Values merge to their least upper bound
When the lattice has a finite size:

• Guarantees termination of the analysis
• Merges are monotonically non-decreasing

• Local steps add finite element from the
lattice

• Stop when no set grows

Incorporating Predicates
Dataflow: Formalization

22

ifz [x] goto B3

B1:[x] := INPUT

B2: [y] := [x]

 OUTPUT [y]

B3: setret [y]

 leave

B0:enter

[y] = 0

jmp

B0 x y
IN

OUT

B1 x y
IN

OUT

B2 x y
IN

OUT

B3 x y
IN

OUT

⊥ ⊥
⊥ ⊥

⊥ ⊥
⊥ ⊥

⊥ ⊥
⊥⊥

⊥ ⊥
⊥⊥

Summary
IR Optimization

Covered some key optimization concepts

• Inter-block (global) analysis

• Dataflow frameworks:
• Define fact sets and how they interact

Next Time – Static Single Assignment (SSA)

• A program form that eases and enhances
optimization

23

	Slide 1: Check-in Review: Dataflow
	Slide 2: Announcements Review: Dataflow
	Slide 3: Abstract Interpretation
	Slide 4: Previously… Review: Dataflow
	Slide 5: Merging Fact Sets Dataflow Intuition
	Slide 6: Today’s Outline IR Optimization
	Slide 7: Refresh Constant/Copy Propagation Dataflow: Formalization
	Slide 8: Example Analyses Dataflow: Formalization
	Slide 9: Example Constant Propagation Dataflow: Formalization - Example
	Slide 10: Today’s Outline IR Optimization
	Slide 11: Handling Practical Programs Global Dataflow: Formalization
	Slide 12: Analysis Termination Dataflow: Formalization
	Slide 13: Analysis Termination Dataflow: Formalization
	Slide 14: Loops: Dependency cycles Dataflow: Formalization
	Slide 15: Handling Practical Data Abstractions Global Dataflow: Formalization
	Slide 16: Today’s Outline IR Optimization
	Slide 17: Complicated Fact Sets Dataflow: Formalization
	Slide 18: Complicated Fact Sets Dataflow: Formalization
	Slide 19: Complicated Fact Sets Dataflow: Formalization
	Slide 20: Ranking Fact Sets Dataflow: Formalization
	Slide 21: Reaching a Fixpoint Dataflow: Formalization
	Slide 22: Incorporating Predicates Dataflow: Formalization
	Slide 23: Summary IR Optimization
	Slide 24
	Slide 25
	Slide 26
	Slide 27

