
Check-in
Review Lecture: Flowgraphs

1

Draw the CFG of this procedure

f: () -> void{
 a:int;
 a = 256;
 while(true){
 if (a > 500){
 a = a++;
 }
 }
}

Announcements
Administrivia

2

Dataflow

Drew Davidson | University of Kansas

3

Previously…
Review Lecture: Flowgraphs

Control flow graphs:

A hybrid IR/ a structural overlay

• Rationale

 Useful for visualizing program flow

• Construction

 Identify basic blocks (BBLs)

 Connect edges on control transfer

• Uses
 Program understanding

4
Optimization

You should know
• Basic Blocks
• How to build a CFG
• The idea of some local optimizations

- Dead Code Elimination
- Common Subexpression

Elimination
- Constant/Copy Propagation

Recall: Some Local Optimizations
Review - Basic Block Optimization

5

[x] := 1

[x] := 2

OUTPUT [x]

Dead Code Elimination: Guaranteed no future use
of this definition (the assignment is not “live”)

Constant Propagation: Guaranteed
previous static definition of this use

Is this definition live?

¯_(ツ)_/¯
Without knowing x’s use
outside this block
We have to keep it

2

Today’s Outline
Dataflow

Dataflow analysis

• Intuition

• Concepts

• Dataflow frameworks

6

Optimization

Consider What Info We Know
Basic Block Optimization

7

[x] := 1

[x] := 2

OUTPUT [x]

Dead Code Elimination: Guaranteed no future use
of this definition (the assignment is not “live”)

Constant Propagation: Guaranteed
previous static definition of this use

Known
Live

Known
Dead

Not Enough
Info

For Dead Code Elimination,
definition could be marked

Guaranteed
Constant

Guaranteed
Non-Constant

Not Enough
Info

For Constant Propagation,
use could be marked

<value> > 1 value or

(DCE) x:

(DCE) x:

(DCE) x:

(DCE) x: (CP) x:

(CP) x: 1

(CP) x: 2

(CP) x: 2

Consider Where We Learn Info
Basic Block Optimization

8

[x] := 1

[x] := 2

OUTPUT [x]

Dead Code Elimination: Guaranteed no future use
of this definition (the assignment is not “live”)

Constant Propagation: Guaranteed
previous static definition of this use

Known
Live

Known
Dead

Not Enough
Info

For Dead Code Elimination,
definition could be marked

Guaranteed
Constant

Guaranteed
Non-Constant

Not Enough
Info

For Constant Propagation,
use could be marked

<value> > 1 value or

(DCE) x:

(DCE) x:

(DCE) x:

(DCE) x: (CP) x:

(CP) x: 1

(CP) x: 2

(CP) x: 2

Backwards
analysis

Forwards
analysis

Beyond Local Optimization
Dataflow

9

[x] := 2

[y] := 3

[z] := [x] * [y]

leave

ifz [x] goto L7

L7:

enter

getarg 1, [x]

nop

jmp

L1:

L2:

L3:

L4:

L5:

L6:

L8:

L6 is dead!

(causes L4 and L5 to be dead)

One possible CFG

Beyond Local Optimization
Dataflow

10

[x] := 2

[y] := 3

[z] := [x] * [y]

leave

ifz [x] goto L7

enter

getarg 1, [x]

OUTPUT [z]

jmp

L7:

L1:

L2:

L3:

L4:

L5:

L6:

L8:

L6 is dead!

(causes L4 and L5 to be dead)

L6 is live!

Cannot be removed

One possible CFG Another possible CFG

[x] := 2

[y] := 3

[z] := [x] * [y]

leave

ifz [x] goto L7

L7:

enter

getarg 1, [x]

nop

jmp

L1:

L2:

L3:

L4:

L5:

L6:

L8:

Today’s Outline
Dataflow

Dataflow analysis

• Intuition

• Concepts

• Dataflow frameworks

11

Optimization

Generalizing Dataflow Intuition
Dataflow Intuition

Let’s revisit the example, and ask some leading questions

12

Returning to the scene of the crime

Why is L6 dead? ≡ Why isn’t L6 live?
One possible CFG

[x] := 2

[y] := 3

[z] := [x] * [y]

ifz [x] goto L7

L7:

enter

getarg 1, [x]

nop

jmp

L1:

L2:

L3:

L4:

L5:

L6:

L8: leave

Generalizing Dataflow Intuition
Dataflow Intuition

Let’s revisit the example, and ask some leading questions

13

Why is L6 dead? ≡ Why isn’t L6 live?

The thing defined was no longer useful

“died of natural causes”

One possible CFG

[x] := 2

[y] := 3

[z] := [x] * [y]

ifz [x] goto L7

L7:

enter

getarg 1, [x]

nop

jmp

L1:

L2:

L3:

L4:

L5:

L6:

L8: leave

Generalizing Dataflow Intuition
Dataflow Intuition

Let’s revisit the example, and ask some leading questions

14

Why is L6 dead? ≡ Why isn’t L6 live?

The thing defined was no longer useful

“died of natural causes”

The thing defined was redefined before use

“it was killed!”

Need to gather some facts to
tell if a statement is dead

What variables are useful
at each program point?

What variables are killed
at each program point?

One possible CFG

[x] := 2

[y] := 3

[z] := [x] * [y]

leave

ifz [x] goto L7

L7:

enter

getarg 1, [x]

[z] := 3

jmp

L1:

L2:

L3:

L4:

L5:

L6:

L9:

L8: write [z]

Generalizing Dataflow Intuition
Dataflow Intuition

15

One possible CFG

[x] := 2

[y] := 3

[z] := [x] * [y]

leave

ifz [x] goto L7

L7:

enter

getarg 1, [x]

[z] := 3

jmp

L1:

L2:

L3:

L4:

L5:

L6:

L9:

L8: write [z]

Need to gather some facts to
tell if a statement is dead

What things are useful
at each program point?

What things are killed
at each program point?

x: , y: , z: (no more code to use anything)

x: , y: , z: nothing is used by leave

x: , y: , z: z is useful, because it’s used later on (in L8)

x: , y: , z: Previous definitions of z are not useful, because L7 killed them

x: , y: , z: nothing live at end of block, because nothing live at entry to successors

Generalizing Dataflow Intuition
Dataflow Intuition

16

One possible CFG

[x] := 2

[y] := 3

[z] := [x] * [y]

leave

ifz [x] goto L7

L7:

enter

getarg 1, [x]

[z] := 3

jmp

L1:

L2:

L3:

L4:

L5:

L6:

L9:

L8: write [z]

x: , y: , z: Both x and y have been found to be used

x: , y: , z: y was killed but a definition of x will still be used later

x: , y: , z: x was killed, previous definitions of x would not be useful past this point

x: , y: , z: nothing live at end of block, because nothing live at entry to EITHER successor

x: , y: , z: x gets used in the predicate

x: , y: , z: x is clobbered

x: , y: , z: enter doesn’t use any variables

x: , y: , z: (no more code to use anything)

x: , y: , z: nothing is used by leave

x: , y: , z: z is useful, because it’s used later on (in L8)

x: , y: , z: Previous definitions of z are not useful, because L7 killed them

x: , y: , z: nothing live at end of block, because nothing live at entry to successor

Generalizing Dataflow Intuition
Dataflow Intuition

17

One possible CFG

[x] := 2

[y] := 3

[z] := [x] * [y]

leave

ifz [x] goto L7

L7:

enter

getarg 1, [x]

[z] := 3

jmp

L1:

L2:

L3:

L4:

L5:

L6:

L9:

L8: write [z]

We call these sets
“dataflow fact sets”

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

Initializing Fact Sets
Dataflow Intuition

18

One possible CFG

[x] := 2

[y] := 3

[z] := [x] * [y]

leave

ifz [x] goto L7

L7:

enter

getarg 1, [x]

[z] := 3

jmp

L1:

L2:

L3:

L4:

L5:

L6:

L9:

L8: write [z]

After Analysis

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

Technically, we should start all fact sets as “Not enough info” (). This will matter later

Before Analysis

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

x: , y: , z:

Merging Fact Sets
Dataflow Intuition

Fact sets may be different when multiple
successors/predecessors join

• Need to merge incoming fact sets

Merge as conservatively as possible

• Don’t do anything without a guarantee!

• Plan for all possible flows

Example: is L3 live? (consider both block paths)

• L3 definition clobbered on the fallthrough
branch (at L5)

• L3 definition not clobbered on the jump branch

19

[b] := 4 * [a]

leave

ifz [a] goto L7

enter

getarg 1, [a]

jmp

L1:

L2:

L4:

L5:

L9:

L8: OUTPUT [b]

getarg 2, [b]L3:

a: , b:

a: , b:

a: , b:

a: , b:

a: , b:

a: , b:

a: , b:

a: , b:

a: , b:

a: , b:

Today’s Outline
Dataflow

Dataflow analysis

• Intuition

• Dataflow frameworks

• Abstract Interpretation

20

Optimization

Harnessing Commonalities of Dataflow Analyses
Dataflow Frameworks

21

Basic algorithms for many dataflow
analyses follow a common template
with minor variations

• Idea: restate each analysis in terms
of its variations

• Profit: reuse the same algorithm to
get results

$$$

Harnessing Commonalities of Dataflow Analyses
Dataflow Frameworks

22

Basic algorithms for many dataflow
analyses follow a common template
with minor variations

• Idea: restate each analysis in terms
of its variations

• Profit: reuse the same algorithm to
get results

Variations

• What information is tracked

• How fact sets are merged

• The direction of the analysis

Templated Information Tracking
Dataflow Frameworks

Framework tracks the “interplay between
data” at basic blocks boundaries

23

…
B3:

…

……
B1: B2:

B4:

For a given basic block b:

• IN(b): facts true on entry to b

• OUT(b): facts true on exit from b

• GEN(b): facts created in b

• KILL(b): facts removed in b

IN 𝐵 = ራ
𝑝 in 𝑝𝑟𝑒𝑑(𝑏)

OUT(𝑝)

OUT 𝑏 = GEN(𝑏) ∪ (IN 𝑏 − KILL 𝑏)

For a backwards analysis
IN is at the bottom of the block
OUT is at the top of the block

Dataflow Sets: Example
Dataflow: Formalization

IN(b): facts true on entry to b

OUT(b): facts true on exit from b

GEN(b): facts created in b

KILL(b): facts removed in b

24

[x] := 2

[x] := [y]

goto B6

B3:

x = {4,5}, y = 0

x = 0, y = 0IN 𝐵 = ራ
𝑝 in 𝑝𝑟𝑒𝑑(𝑏)

OUT(𝑝)

OUT 𝑏 = GEN(𝑏) ∪ (IN 𝑏 − KILL 𝑏)

…

……
B1: B2:

x = 4, y = 0 x = 5, y = 0

B4:

Benefits of the Framework
Dataflow Frameworks

When set up properly…

• Safety of the analysis is guaranteed

• Termination of the analysis is guaranteed

• Order of analysis (which block you process) is
unimportant

25

Compute Live Variables
Dataflow: Formalization - Example

26

[x] := 2

ifz [t2] goto B4

B2:

[x] := 0
B4:

[x] := [y]

ifz [t5] goto B6

B5:

[x] := 2

[x] := 0

goto B6

B3:

[y] := 0

ifz [t1] goto B2

B1:

[z] := [x]

OUTPUT [z]

B6:

jmp

jmp

jmp

jmp

What values are live at B6?

{ }

{x}

{x}

{ }

{x}

{t5, y}

x

{ }

{t5, y, t2}

{t5, y}

{t5, y, t2}

{t5,t2,t1}

Dead!

Example Analyses
Dataflow: Formalization

Let’s do some examples in this light

• A slightly bigger dead code elimination example

• Constant propagation
• Recall: replace a variable with it’s known constant value

• Forward analysis

• Fact sets: variable to (sets of) known values

27

Refresh Constant/Copy Propagation
Dataflow: Formalization

Copy Propagation

28

Constant folding

x := 1

z := x + y

y := x

x := 3

x := 1

z := 1 + 1

y := 1

x := 3

x := 1

z := 1 + 1

y := 1

x := 3

x := 1

z := 2

y := 1

x := 3

• Replace RHS of simple assigns
with value of assign (if known)

• Forward analysis

• Replace constant RHS
expressions with value

• Traversal order isn’t important

Example Constant Propagation
Dataflow: Formalization - Example

29

[x] := 2

ifz [t2] goto B4
B2:

[x] := 0B4:

[x] := [y]

ifz [t5] goto B6

B5:

x := 2

x := 0

goto B6

B3:

[y] := 0

ifz [t1] goto B2

B1:

[z] := [x]
B6:

jmp

jmp

jmp

jmp

What values can x take on at B6?

{ }

{y = 0, x = 0}

{y = 0}

{y = 0}{y = 0}

{y = 0, x = 2}

{ y = 0, x = {0,2} }

{y = 0, x = 0}

{y = 0, x = 2}

{y = 0, x = 0}

{y = 0, x = 0}

{y = 0, x = 0, z = 0}

0

Handling Practical Data Abstractions
Global Dataflow: Formalization

Global variables

• We only have visibility into 1 procedure

• Be conservative about the effect of other
procedures
• Reset fact sets across a call

• Consider global variables live at function end

30

Analysis Termination
Dataflow: Formalization

In the previous examples, we
completed in one pass over the
CFG

• This won’t always be the case,
due to a fundamental construct…

31

Loops
Dataflow: Formalization

Loops complicate
dataflow analysis

• Create cyclic
dependencies

• Complicate fact sets

32

Oh bröther, you might have some lööps

Loops: Dependency cycles
Dataflow: Formalization

Solution: Saturate fact sets

• Start sets “TBD” () value

• Run the algorithm until sets don’t
change

We’ve seen the saturation
approach before

• (FIRST and FOLLOW sets)

33

ifz rand() goto B2

B2:

OUT(B1):

jmp [x] := 3

[y] := [x]

IN(B2) requires knowing OUT(B2)

OUT(B2) requires knowing IN(B2)

Constant propagation

B1: enter

 [x] := 3

B3: leave

IN(B1):

IN(B2):

OUT(B2):

{x= ,y= }

{x=3,y= }

{x= 3, y= }

{x= ,y= }

{x=3, y= }
{x=3, y= 3 }

IN(B3): {x=3,y= }

OUT(B3):{x=3,y= }

{x=3, y= 3 }

{x=3, y= 3 }

Summary
Underview

Covered some key optimization concepts

• Inter-block (global) analysis

• Dataflow frameworks:
• Define fact sets and how they interact

Next Time – Static Single Assignment (SSA)

• A program form that eases and enhances
optimization

38

	Slide 1: Check-in Review Lecture: Flowgraphs
	Slide 2: Announcements Administrivia
	Slide 3: Dataflow
	Slide 4: Previously… Review Lecture: Flowgraphs
	Slide 5: Recall: Some Local Optimizations Review - Basic Block Optimization
	Slide 6: Today’s Outline Dataflow
	Slide 7: Consider What Info We Know Basic Block Optimization
	Slide 8: Consider Where We Learn Info Basic Block Optimization
	Slide 9: Beyond Local Optimization Dataflow
	Slide 10: Beyond Local Optimization Dataflow
	Slide 11: Today’s Outline Dataflow
	Slide 12: Generalizing Dataflow Intuition Dataflow Intuition
	Slide 13: Generalizing Dataflow Intuition Dataflow Intuition
	Slide 14: Generalizing Dataflow Intuition Dataflow Intuition
	Slide 15: Generalizing Dataflow Intuition Dataflow Intuition
	Slide 16: Generalizing Dataflow Intuition Dataflow Intuition
	Slide 17: Generalizing Dataflow Intuition Dataflow Intuition
	Slide 18: Initializing Fact Sets Dataflow Intuition
	Slide 19: Merging Fact Sets Dataflow Intuition
	Slide 20: Today’s Outline Dataflow
	Slide 21: Harnessing Commonalities of Dataflow Analyses Dataflow Frameworks
	Slide 22: Harnessing Commonalities of Dataflow Analyses Dataflow Frameworks
	Slide 23: Templated Information Tracking Dataflow Frameworks
	Slide 24: Dataflow Sets: Example Dataflow: Formalization
	Slide 25: Benefits of the Framework Dataflow Frameworks
	Slide 26: Compute Live Variables Dataflow: Formalization - Example
	Slide 27: Example Analyses Dataflow: Formalization
	Slide 28: Refresh Constant/Copy Propagation Dataflow: Formalization
	Slide 29: Example Constant Propagation Dataflow: Formalization - Example
	Slide 30: Handling Practical Data Abstractions Global Dataflow: Formalization
	Slide 31: Analysis Termination Dataflow: Formalization
	Slide 32: Loops Dataflow: Formalization
	Slide 33: Loops: Dependency cycles Dataflow: Formalization
	Slide 38: Summary Underview
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

