Check-In

Review: Machine-Code Optimization

Give an example of a snippet of x64 code that benefits from two
peephole optimizations

)

s
e

”\)“‘”\/ Lo
LBLK Vm(if 7Tr7< V\UP
f?*ﬁ;\%‘

Admin

Announcements and Housekeeping

All Quizzes Gradea!

Announcements and Housekeeping

hooray

M O 0O W@ > U

6%
24%
28%
15%
9%
19%

Quiz 2

Announcements and Housekeeping

m O O W > O

27%
30%
15%
9%
6%
13%

Quiz

Announcements and

dusekeeping

" Drew Davidson | University of Kansas

n !ﬁr-gnw
ICTED

- -Qm-——

"
é\OwgraphS

!
| B

s

Previously...

Machine Code Optimization

Machine code optimization overview
Improving data allocation

» Register allocation

Improving Final Code

* Peephole optimization

* Instruction Pipelines

~

/ You should know

* Interference graphs

* Sharing AR slots / registers for allocation

* How/where to apply peephole optimizations
* How/where instruction reordering might aid

k a simple instruction pipeline /

Compiler Construction

Source code

v

Lexical
analysis

v

Syntactic
analysis

v

Semantic analysis

J

v

Intermediate code
generation

v

Final code
generation

88N S

\ 4

Target code

Progress Pics

Basic source to target workflow:
 Complete

e Outputs naive code
Advanced workflow:

e “Postprocess” the output of a
naive phase

Compiler Construction

Source code

v

Lexical
analysis
v
Syntactic
analysis
v

Semantic analysis

v

Intermediate code
generation
v
Intermediate code
optimization
v
Final code
generation
v

Final code

&‘ ‘“‘,\‘

optimization

A 4

[Target code]

A

Progress Pics

Basic source to target workflow:
 Complete

e Outputs naive code
Advanced workflow:

e “Postprocess” the output of a
naive phase
- Discussed: final code “cleanup”
- Next up: intermediate code

Lecture Outline

Flowgraphs

Program analysis:

* Goals

e Control flow graphs

Local Optimizations

* Dead code elimination

« Common subexpression elimination
* Constant/copy propagation

10

Making faster IR programs

Flowgraphs: Program analysis

General constraints:

* We can’t violate program ——
semantics |

* Minimal architecture details !
Constraint-friendly goals: i
* Don’t do useless computation SpBBd UP'

e Don’t do redundant
computation

11

Simple Example: Constant Folding

Flowgraphs: Program analysis

Statically compute known expressions
e Replace the runtime expression with its value

4)

Analysis

- ldentify constant expressions
- Compute known value
Rewrite 2] :=
- Replace expression with value

- /

Before After

[z] =1+2

Program Analysis

Flowgraphs: Program analysis

The more we know about
the program the more we
can improve it

* What might we be
interested in knowing...?

13

“Structural” Properties of a Program

Flowgraphs: Program analysis

E.g. for a given program point:
* What paths lead there?

* Isitin a deeply nested loop?
* Is it reachable at all?
Knowing the above info

supports other analyses i | TS

* Might a variable be
uninitialized?

14

“Structural” Properties of a Program

Flowgraphs: Program analysis

E.g. for a given program point:
* What paths lead there?

* Isitin a deeply nested loop?
* |s it reachable at all?

Knowing the above info
supports other analyses

* Might a variable be
uninitialized?

Intuition: Flow charts

Notation

e Nodes are
instructions

* Edges goto
successor nodes

Operation

* Execute current
instruction

* Proceed to the
right successor

Flowgraphs: Program analysis

Fig. 59

~902

Are there any
preassembled cold
gamishes?

Was the hot filling
assembled in a tool
with two cavities?

Y n
~Place sandwich assembly tool on work Place a second tool having only one cavity
surface ~904 next to the first tool, side by side. ~806
|

Place first cold gamish if appropriate in
appropriate cavity ~908

Place second cold gamish if appropriate in Retrieve cold gamish preassembled in a

appropriate cavity ~910 second tool having only one cavity ~912
]]

Place third cold gamish if appropriate in . Place the second tool next to the first tool,
appropriate cavity ~914 side by side. ~918

Place nth cold gamish if appnopriate in
appropriate cavity ~916

(I End 3 |

Flow chart for building a sandwich,
appearing in a McDonald’s patent

16

Intuition: Flow charts

Flowgraphs: Program analysis

Notation

e Nodes are
instructions

* Edges go to
successor nodes

Operation

* Execute current
instruction

* Proceed to the
right successor

Fig. 59

y
~Place sandwich assembly tool on work
surface

~904

n
Place a second tool having only one cavity

next to the first tool, side by side. ‘

Place first cold gamish if appmpdate in

appro cavity

[Place second cold gamish if appropriate in

appropriate cavity

~910

[Piace third cold gamish if appropriate in

appropriate cavity

~014

Place nth cold gamish if appropriate in

appropriate

_|~ot6

Not just for

| End g

Flow chart for building a sg
appearing in a McDonald’s pg

~906

sandwiches!

17

Intuition: Flow Charts ... for Code?!

Flowgraphs: Program analysis

Notation

e Nodes are
instructions

* Edges go to
successor nodes

Operation

* Execute current
instruction

* Proceed to the
right successor

src code

3AC code

L5:

1
2
3.
4
5

Instruction Flowgraph

r

&

[a] =7

~

J

y

r

[t1] :=[a] <4

~N

y

ifz [t1] goto L5

y

g

[a] :=4

r

—> |L5:[a] :=[a] + 2

18

Intuition: Flow Charts ... FROM Code?!

Flowgraphs: Program analysis

[enter funk]

v
| getin 1 [a] |
v

[getin 2 [b]]
void funk (int a, 1int b) { v
if (a < b) | (ft1] := fa] < [b])
if (a < 10){ |ifz [t1] goto L a —
a =a+ b (1t2] := [a] < 10 |
\ 4
) } [ifz [t2] goto L b }—
2
if (b < 3){ ((a] := [a] + [Db]]
) L a:| nop
}
[[t3] := [b] < 3]
[ifz [t3] goto L c¢ }—
(la] := 1]
L c: nop [«

[leavé'funk]

Intuition: Flow Charts ... FROM Code?!

Flowgraphs: Program analysis

[enter funk]
v

| getin 1 [a] |

v
[getin*Z [b]]

void funk(int a, int b){ LLELl := [a] < [b]]
if (a < b){ |ifz [t1] goto L a |
1f (a < 10) { R
(a = a + b; [[t2] := [a] < lO]
!
} _ | ifz [t2] goto L D |
} jmp ———
if (b < 3){ jmpl[[a] := [a] + [b]]
a = 1,’ A
} ‘i L_b: nop
} L_a:{ nop
([t3] := [b] < 3]

[ifFalse tmpC3 goto L c]

jmp [a ?= 1]
V¢
L c: neb

[leave funk]

Code Flowcharts: Seem Familiar?

Flowgraphs: Program analysis

Maybe this is how you learned to
think about code!

* It’s a nice way to visualize the
control flow of the program

 We can extend this intuition for
program analysis

21

Lecture Outline

Flowgraphs

Program analysis:
* Goals

[' Control flow graphs]

Local Optimizations

* Dead code elimination

« Common subexpression elimination
* Constant/copy propagation

22

Intuition

Flowgraphs: Control flow graphs

A more compact version of
the instruction flow chart

* But still preserves the way
in which control passes
through the program

[t1]:=[a] <4

[a] =4

L5:[a]:=[a] +2

jmp

23

Compacting the Flowchart Concept

Flowgraphs Control flow graphs

|]
The flowchart is [getarg 2 5]
needlessly verbose | (Tompcir - a1 -

v

E[ifz [tmpCl] goto

* We could put
multiple instructions (Tempc2] = [a] < 10)
in a node (ifz [tmpC2] goto L b)

* Group the imp me | (Tal := [a) + [b])
instructions that ' |
always execute | : |
together (Tomc3l - b1 <3)

(ifz [tmpC3] goto L ¢ |

24

Basic Blocks

Flowgraphs: Control flow graphs

* Definition: Sequence of instructions guaranteed to
execute without interruption

25

Basic Blocks Boundaries

Flowgraphs: Control flow graphs

e “Terminator” — An

instruction that ends a]'EBMiMNA'I'ﬂ

basic block

-3

e “Leader” — An instruction
that begins a block

\
{

n .

G

26

Basic Blocks

Flowgraphs: Control flow graphs

e Sequence of instructions
guaranteed to execute
without interruption -

The first instruction in the procedure

¢ Terminology: The target of a jump
(e “Leader” — An instruction \/

The instruction after an terminator

. that begins a block

J
"o “Terminator” — An N T
instruction that ends a

S basic block) A call (We’ll use a special LINK edge)

The last instruction of the procedure
— A jump (ifz, goto)

Basic Blocks

Flowgraphs: Control flow graphs

Leaders
The first instruction in the procedure
The target of a jump

The instruction after a terminator

Terminators
The last instruction in the procedure

A jump (ifz, goto)

A call (We’ll use a special LINK edge to successor)

Next instruction is a leader
Jjmp

Construction algorithm
foreach instr 1 1n procedure:
1f 1 1s a leader, begin a new BBL

[t1] :=[a] <4
ifz [t1] goto L5

if 1 1s a terminator, end current BBL

28

Building Basic Blocks

Flowgraphs: Control flow graphs

Leaders
The first instruction in the procedure
The target of a jump

The instruction after a terminator

Terminators GOOD ENOUGH!

The last instruction in the procedure
A jump (ifz, goto) This algorithm isn’t optimal,

A call (We’ll use a special LINK edge to successor) but we’ll go with it

Next instruction is a leader

example
Construction algorithm :
: . jmp L1
foreach 1nstr 1 1n procedure:
L1: nop

1f 1 1s a leader, begin a new BBL
if 1 1s a terminator, end current BBL

29

The Control Flow Graph: Summary

Flowgraphs: Control flow graphs

A graph of basic blocks

* One graph per procedure
* Exactly one entry block
e Exactly one exit block

* Distinguished edge types:
* Back edges —an edge to a
previously-encountered node

e Call edge — Connects a call site
to the called function

* Link edge — Connects a
function call to it’s return point

30

Benefits of Basic Blocks

Flowgraphs: Control flow graphs

Makes CFGs a more manageable data structure

 Zoom out and observe procedure structure

(head) }

!

ﬁnpl+[

(body)

R

(after) [«

] imp;

If-stmt

[(head) J

jmp (True branch

k///////
[(after) J

If-else

[(head)

F/ (True branch)

(False branch)

[(after)]

31

Benefits of Basic Blocks

Flowgraphs: Control flow graphs

Makes CFGs a more manageable data structure
 Zoom out and observe procedure structure

(o

e Zoom in to a BBL's “uninterrupted sequences”

Simplifies analysis:

* Many properties we want to know are trivial to
compute within a BBL

Types of CFG Analysis

Control Flow Graphs: Representation

Modularizes analysis:

-
* Analysis within a single

_ basic block

J

. basic blocks in a function

. Analysis between multiple\

‘e What about analysis
between multiple
_ functions?

J
<

Traditionally called “Local” analysis

Traditionally called “Global” analysis

We'll come back to this one

33

Lecture Outline

Flowgraphs

Program analysis:
* Goals
e Control flow graphs

 Local Optimizations |

* Dead code elimination
« Common subexpression elimination
» Constant/copy propagation

34

Dead Code Elimination

Flowgraphs: Local Optimizations

Remove “useless” instructions (those with no effect)
* Analysis: live variable analysis

([x] =1) (|
[X] :=2 [x] :=2
[y]:=3 » [y] ;=3
[z] := [x] * [y] [z] := [x] * [y]

| write [z]] write [z]

Constant/Copy Propagation

Flowgraphs: Local Optimizations

Replace a variable use with its definition
* Analysis: “copy identification” (doesn’t really have a name)

Propagate x’s value

This assignment is
N /_\ now dead code!
e) e ¥ A
[y] := [x] [y] := [x]
[2] =[] * [yl » [2] = [* [x]
[y] =1 [yl :=1
write [z] write [z]

\

J

.

When propagating constant values, can aid in constant folding

X =1 1 | Foldto3
[y] =2 » v] := 2 /
[2] == [x] + [y] [2] :=1+2

36

Common Subexpression Elimination

Flowgraphs: Local Optimizations

[a] := [x] * [y]
— b = [x] * [y]

[c] == [x] * [y]

~N

_J

=

euse already-computed expressions
* Analysis: available expression analysis

r

[t]:=[x] * [y] |

[a] := [4\
[b] :=[t

[c] == [t]

J

37

Lecture Ena

Flowgraphs

Summary

» Control Flow Graphs serve as an abstraction of the
routes through the program

* Basic blocks summarize guaranteed sequences
and enable local optimizations (DCE, CP, CSE)

Next Time

* Global optimizations — extending optimization
across multiple basic blocks

	Slide 1: Check-In Review: Machine-Code Optimization
	Slide 2: Admin Announcements and Housekeeping
	Slide 3: All Quizzes Graded! Announcements and Housekeeping
	Slide 4: Quiz 2 Announcements and Housekeeping
	Slide 5: Quiz 2 Announcements and Housekeeping
	Slide 6: Flowgraphs
	Slide 7: Previously… Machine Code Optimization
	Slide 8: Compiler Construction Progress Pics
	Slide 9: Compiler Construction Progress Pics
	Slide 10: Lecture Outline Flowgraphs
	Slide 11: Making faster IR programs Flowgraphs: Program analysis
	Slide 12: Simple Example: Constant Folding Flowgraphs: Program analysis
	Slide 13: Program Analysis Flowgraphs: Program analysis
	Slide 14: “Structural” Properties of a Program Flowgraphs: Program analysis
	Slide 15: “Structural” Properties of a Program Flowgraphs: Program analysis
	Slide 16: Intuition: Flow charts Flowgraphs: Program analysis
	Slide 17: Intuition: Flow charts Flowgraphs: Program analysis
	Slide 18: Intuition: Flow Charts … for Code?! Flowgraphs: Program analysis
	Slide 19: Intuition: Flow Charts … FROM Code?! Flowgraphs: Program analysis
	Slide 20: Intuition: Flow Charts … FROM Code?! Flowgraphs: Program analysis
	Slide 21: Code Flowcharts: Seem Familiar? Flowgraphs: Program analysis
	Slide 22: Lecture Outline Flowgraphs
	Slide 23: Intuition Flowgraphs: Control flow graphs
	Slide 24: Compacting the Flowchart Concept Flowgraphs: Control flow graphs
	Slide 25: Basic Blocks Flowgraphs: Control flow graphs
	Slide 26: Basic Blocks Boundaries Flowgraphs: Control flow graphs
	Slide 27: Basic Blocks Flowgraphs: Control flow graphs
	Slide 28: Basic Blocks Flowgraphs: Control flow graphs
	Slide 29: Building Basic Blocks Flowgraphs: Control flow graphs
	Slide 30: The Control Flow Graph: Summary Flowgraphs: Control flow graphs
	Slide 31: Benefits of Basic Blocks Flowgraphs: Control flow graphs
	Slide 32: Benefits of Basic Blocks Flowgraphs: Control flow graphs
	Slide 33: Types of CFG Analysis Control Flow Graphs: Representation
	Slide 34: Lecture Outline Flowgraphs
	Slide 35: Dead Code Elimination Flowgraphs: Local Optimizations
	Slide 36: Constant/Copy Propagation Flowgraphs: Local Optimizations
	Slide 37: Common Subexpression Elimination Flowgraphs: Local Optimizations
	Slide 38: Lecture End Flowgraphs

