
Check-In
Review: Machine-Code Optimization

1

Give an example of a snippet of x64 code that benefits from two
peephole optimizations

Admin
Announcements and Housekeeping

2

All Quizzes Graded!
Announcements and Housekeeping

3

hooray

Quiz 2
Announcements and Housekeeping

4

P 6%
A 24%
B 28%
C 15%
D 9%
F 19%

Quiz 2
Announcements and Housekeeping

5

P 27%
A 30%
B 15%
C 9%
D 6%
F 13%

Flowgraphs

Drew Davidson | University of Kansas

6

Previously…
Machine Code Optimization

7

Optimization

Machine code optimization overview

Improving data allocation

• Register allocation

Improving Final Code

• Peephole optimization

• Instruction Pipelines

You should know
• Interference graphs
• Sharing AR slots / registers for allocation
• How/where to apply peephole optimizations
• How/where instruction reordering might aid

a simple instruction pipeline

Compiler Construction
Progress Pics

8

Target code

Source code

Lexical
 analysis

Syntactic
analysis

Semantic analysis

Intermediate code
generation

Final code
generation

Basic source to target workflow:

• Complete

• Outputs naïve code

Advanced workflow:

• “Postprocess” the output of a
naïve phase

Compiler Construction
Progress Pics

9

Intermediate code
optimization

Target code

Source code

Lexical
 analysis

Syntactic
analysis

Semantic analysis

Intermediate code
generation

Final code
generation

Final code
optimization

We are
here

- Discussed: final code “cleanup”
- Next up: intermediate code

Basic source to target workflow:

• Complete

• Outputs naïve code

Advanced workflow:

• “Postprocess” the output of a
naïve phase

Lecture Outline
Flowgraphs

Program analysis:

• Goals

• Control flow graphs

Local Optimizations

• Dead code elimination

• Common subexpression elimination

• Constant/copy propagation

10

Optimization

Making faster IR programs
Flowgraphs: Program analysis

General constraints:

• We can’t violate program
semantics

• Minimal architecture details

Constraint-friendly goals:

• Don’t do useless computation

• Don’t do redundant
computation

11

Simple Example: Constant Folding
Flowgraphs: Program analysis

Statically compute known expressions

• Replace the runtime expression with its value

12

[z] := 1 + 2 [z] := 3

Analysis
- Identify constant expressions
- Compute known value
Rewrite
- Replace expression with value

Before After

Program Analysis
Flowgraphs: Program analysis

The more we know about
the program the more we
can improve it

• What might we be
interested in knowing…?

13

“Structural” Properties of a Program
Flowgraphs: Program analysis

E.g. for a given program point:

• What paths lead there?

• Is it in a deeply nested loop?

• Is it reachable at all?

Knowing the above info
supports other analyses

• Might a variable be
uninitialized?

14

“Structural” Properties of a Program
Flowgraphs: Program analysis

E.g. for a given program point:

• What paths lead there?

• Is it in a deeply nested loop?

• Is it reachable at all?

Knowing the above info
supports other analyses

• Might a variable be
uninitialized?

15

We need a program
abstraction to capture

these details

Intuition: Flow charts
Flowgraphs: Program analysis

Notation

• Nodes are
instructions

• Edges go to
successor nodes

Operation

• Execute current
instruction

• Proceed to the
right successor

16

Flow chart for building a sandwich,
appearing in a McDonald’s patent

Intuition: Flow charts
Flowgraphs: Program analysis

Notation

• Nodes are
instructions

• Edges go to
successor nodes

Operation

• Execute current
instruction

• Proceed to the
right successor

17

Flow chart for building a sandwich,
appearing in a McDonald’s patent

Not just for

sandwiches!

Intuition: Flow Charts … for Code?!
Flowgraphs: Program analysis

Notation

• Nodes are
instructions

• Edges go to
successor nodes

Operation

• Execute current
instruction

• Proceed to the
right successor

18

[a] := 7

[t1] := [a] < 4

[a] := 4

[a] := [a] + 2

ifz [t1] goto L5

L5:

a = 7;

if (a < 4){

 a = 4;

}

a += 2;

src code

1. [a] := 7

 2. [t1] := [a] < 4

 3. ifz [t1] goto L5

 4. [a] := 4

L5: 5. [a] := [a] + 2

3AC code Instruction Flowgraph

Intuition: Flow Charts … FROM Code?!
Flowgraphs: Program analysis

19

enter funk

getin 1 [a]

getin 2 [b]

[t1] := [a] < [b]

ifz [t1] goto L_a

[t2] := [a] < 10

ifz [t2] goto L_b

[a] := [a] + [b]

[t3] := [b] < 3

ifz [t3] goto L_c

[a] := 1

leave funk

nopL_c:

nopL_b:

nopL_a:

void funk(int a, int b){

 if (a < b){

 if (a < 10){

 a = a + b;

 }

 }

 if (b < 3){

 a = 1;

 }

}

Intuition: Flow Charts … FROM Code?!
Flowgraphs: Program analysis

20

enter funk

getin 1 [a]

getin 2 [b]

[t1] := [a] < [b]

ifz [t1] goto L_a

[t2] := [a] < 10

ifz [t2] goto L_b

[a] := [a] + [b]

[t3] := [b] < 3

ifFalse tmpC3 goto L_c

a := 1

leave funk

nopL_c:

nopL_b:

nopL_a:

void funk(int a, int b){

 if (a < b){

 if (a < 10){

 a = a + b;

 }

 }

 if (b < 3){

 a = 1;

 }

}

jmp

jmp

jmp

Code Flowcharts: Seem Familiar?
Flowgraphs: Program analysis

Maybe this is how you learned to
think about code!

• It’s a nice way to visualize the
control flow of the program

• We can extend this intuition for
program analysis

21

Lecture Outline
Flowgraphs

Program analysis:

• Goals

• Control flow graphs

Local Optimizations

• Dead code elimination

• Common subexpression elimination

• Constant/copy propagation

22

Optimization

Intuition
Flowgraphs: Control flow graphs

• A more compact version of
the instruction flow chart

• But still preserves the way
in which control passes
through the program

23

Compacting the Flowchart Concept
Flowgraphs: Control flow graphs

The flowchart is
needlessly verbose

• We could put
multiple instructions
in a node

• Group the
instructions that
always execute
together

24

enter funk

getarg 1 [a]

getarg 2 [b]

[tmpC1] := [a] < [b]

ifz [tmpC1] goto L_a

[tmpC2] := [a] < 10

ifz [tmpC2] goto L_b

[a] := [a] + [b]

[tmpC3] := [b] < 3

ifz [tmpC3] goto L_c

a := 1

leave funk

nopL_c:

nopL_b:

nopL_a:

jmp jmp

jmp

Basic Blocks
Flowgraphs: Control flow graphs

• Definition: Sequence of instructions guaranteed to
execute without interruption

25

Basic Blocks Boundaries
Flowgraphs: Control flow graphs

• “Terminator” – An
instruction that ends a
basic block

• “Leader” – An instruction
that begins a block

26

Basic Blocks
Flowgraphs: Control flow graphs

• Sequence of instructions
guaranteed to execute
without interruption

• Terminology:
• “Leader” – An instruction

that begins a block

• “Terminator” – An
instruction that ends a
basic block

27

A jump (ifz, goto)

The first instruction in the procedure

The target of a jump

The last instruction of the procedure

A call (We’ll use a special LINK edge)

The instruction after an terminator

Basic Blocks
Flowgraphs: Control flow graphs

28

A jump (ifz, goto)

The first instruction in the procedure

The target of a jump

The last instruction in the procedure

A call (We’ll use a special LINK edge to successor)

The instruction after a terminator

[a] := 7

[t1] := [a] < 4

[a] := 4

[a] := [a] + 2

ifz [t1] goto L5

L5:

jmp

Leaders

Terminators

Construction algorithm
foreach instr i in procedure:

 if i is a leader, begin a new BBL

 if i is a terminator, end current BBL

Next instruction is a leader

Building Basic Blocks
Flowgraphs: Control flow graphs

29

This algorithm isn’t optimal,
but we’ll go with it

jmp L1
L1: nop

example

A jump (ifz, goto)

The first instruction in the procedure

The target of a jump

The last instruction in the procedure

A call (We’ll use a special LINK edge to successor)

The instruction after a terminator

Leaders

Terminators

Construction algorithm
foreach instr i in procedure:

 if i is a leader, begin a new BBL

 if i is a terminator, end current BBL

Next instruction is a leader

The Control Flow Graph: Summary
Flowgraphs: Control flow graphs

A graph of basic blocks

• One graph per procedure
• Exactly one entry block

• Exactly one exit block

• Distinguished edge types:
• Back edges – an edge to a

previously-encountered node

• Call edge – Connects a call site
to the called function

• Link edge – Connects a
function call to it’s return point

30

Benefits of Basic Blocks
Flowgraphs: Control flow graphs

Makes CFGs a more manageable data structure

• Zoom out and observe procedure structure

31

If-stmt

(head)

(True branch)

(after)

jmp

Loops

(head)

(body)

(after)

jmp

If-else

(head)

(True branch)

(after)

jmp
(False branch)

jmpjmp

Benefits of Basic Blocks
Flowgraphs: Control flow graphs

Makes CFGs a more manageable data structure

• Zoom out and observe procedure structure

• Zoom in to a BBL’s “uninterrupted sequences”

Simplifies analysis:

• Many properties we want to know are trivial to
compute within a BBL

32

Types of CFG Analysis
Control Flow Graphs: Representation

Modularizes analysis:

• Analysis within a single
basic block

• Analysis between multiple
basic blocks in a function

• What about analysis
between multiple
functions?

33

Traditionally called “Local” analysis

Traditionally called “Global” analysis

We’ll come back to this one

Lecture Outline
Flowgraphs

Program analysis:

• Goals

• Control flow graphs

Local Optimizations

• Dead code elimination

• Common subexpression elimination

• Constant/copy propagation

34

Optimization

Dead Code Elimination
Flowgraphs: Local Optimizations

Remove “useless” instructions (those with no effect)

• Analysis: live variable analysis

35

[x] := 1

[y] := 3

[z] := [x] * [y]

write [z]

[x] := 2 [x] := 2

[y] := 3

[z] := [x] * [y]

write [z]

This definition does not reach the end of the block nor any use in the block!

Constant/Copy Propagation
Flowgraphs: Local Optimizations

Replace a variable use with its definition

• Analysis: “copy identification” (doesn’t really have a name)

36

[z] := [x] * [y]

write [z]

[y] := [x]

[z] := [x] * [x]

write [z]

[y] := 1

[y] := [x]

[y] := 1

Propagate x’s value This assignment is
now dead code!

When propagating constant values, can aid in constant folding

[z] := [x] + [y]

[x] := 1

[y] := 2

[z] := 1 + 2

[x] := 1

[y] := 2

Fold to 3

Common Subexpression Elimination
Flowgraphs: Local Optimizations

Reuse already-computed expressions

• Analysis: available expression analysis

37

[a] := [x] * [y]

[t] := [x] * [y]

[b] := [x] * [y]

[c] := [x] * [y]

[a] := [t]

[b] := [t]

[c] := [t]

Lecture End
Flowgraphs

Summary

• Control Flow Graphs serve as an abstraction of the
routes through the program

• Basic blocks summarize guaranteed sequences
and enable local optimizations (DCE, CP, CSE)

Next Time

• Global optimizations – extending optimization
across multiple basic blocks

38

	Slide 1: Check-In Review: Machine-Code Optimization
	Slide 2: Admin Announcements and Housekeeping
	Slide 3: All Quizzes Graded! Announcements and Housekeeping
	Slide 4: Quiz 2 Announcements and Housekeeping
	Slide 5: Quiz 2 Announcements and Housekeeping
	Slide 6: Flowgraphs
	Slide 7: Previously… Machine Code Optimization
	Slide 8: Compiler Construction Progress Pics
	Slide 9: Compiler Construction Progress Pics
	Slide 10: Lecture Outline Flowgraphs
	Slide 11: Making faster IR programs Flowgraphs: Program analysis
	Slide 12: Simple Example: Constant Folding Flowgraphs: Program analysis
	Slide 13: Program Analysis Flowgraphs: Program analysis
	Slide 14: “Structural” Properties of a Program Flowgraphs: Program analysis
	Slide 15: “Structural” Properties of a Program Flowgraphs: Program analysis
	Slide 16: Intuition: Flow charts Flowgraphs: Program analysis
	Slide 17: Intuition: Flow charts Flowgraphs: Program analysis
	Slide 18: Intuition: Flow Charts … for Code?! Flowgraphs: Program analysis
	Slide 19: Intuition: Flow Charts … FROM Code?! Flowgraphs: Program analysis
	Slide 20: Intuition: Flow Charts … FROM Code?! Flowgraphs: Program analysis
	Slide 21: Code Flowcharts: Seem Familiar? Flowgraphs: Program analysis
	Slide 22: Lecture Outline Flowgraphs
	Slide 23: Intuition Flowgraphs: Control flow graphs
	Slide 24: Compacting the Flowchart Concept Flowgraphs: Control flow graphs
	Slide 25: Basic Blocks Flowgraphs: Control flow graphs
	Slide 26: Basic Blocks Boundaries Flowgraphs: Control flow graphs
	Slide 27: Basic Blocks Flowgraphs: Control flow graphs
	Slide 28: Basic Blocks Flowgraphs: Control flow graphs
	Slide 29: Building Basic Blocks Flowgraphs: Control flow graphs
	Slide 30: The Control Flow Graph: Summary Flowgraphs: Control flow graphs
	Slide 31: Benefits of Basic Blocks Flowgraphs: Control flow graphs
	Slide 32: Benefits of Basic Blocks Flowgraphs: Control flow graphs
	Slide 33: Types of CFG Analysis Control Flow Graphs: Representation
	Slide 34: Lecture Outline Flowgraphs
	Slide 35: Dead Code Elimination Flowgraphs: Local Optimizations
	Slide 36: Constant/Copy Propagation Flowgraphs: Local Optimizations
	Slide 37: Common Subexpression Elimination Flowgraphs: Local Optimizations
	Slide 38: Lecture End Flowgraphs

