
Check-in 30
Review – Other Codegen

1

Translate the following to x64
int main(){

 int8_t a;

 int8_t b;

 return a + -b;

}

Check-in 30 Solution
Review – Other Codegen

2

Translate the following to x64
int main(){

 int8_t a;

 int8_t b;

 return a + -b;

}

Announcements
Administrivia

Quiz 3 Friday

• Review session TOMORROW at 7:00 (room TBA)

3

Heap Management
4

Previously…
Other Code Generation

Other constructs

• Shorter primitive types

• Arrays

• Pointers

• Strings

• Structs

5

Machine Codegen

You Should Know
• How to compile programs with strings
• How to compile programs with arrays
• The general idea behind pointers and

shorter primitive types

Today’s Outline
Heap Management

Heap Memory

• Using the heap

• OS interface

Garbage collection

• Reference Counting

• Mark and Sweep

6

Machine Codegen

stack
“budget”
remaining

The Stack “Budget”
Heap Management – Heap Memory

Fixed overall budget, managed internally

(On Linux):

7

Stack Segment

AR1

free

AR2AR3

rsp rbp

• The stack segment is actually pretty small (10 MB)!

…

When the Stack isn’t enough
Heap Management – Heap Memory

Stack memory is efficient
but constrained

• (De)Allocation is easy (just
move the stack ptr)

• Object lifetime is at most
the lifetime of the
activation record
• This is a significant

limitation!

8

Don’t Forget the Heap!
Heap Management – Heap Memory

9

rsp rbp

0xc8 0xd8

stack

locals saved rbp saved rip

fn1 AR

0xe0

movq $1 %rax

0x20

rip

code segment heap

…subq $8, %rsp……

fn 1 code

0x40 0x60 0xd0

Memory snapshot

fn 2 code

… …

global data

int g
0x123 0x48 0x69 0x0

char * str

0x61 0x62

free

obj1

Expressiveness/Efficiency Limitations
Heap Management

int[200] getArrayOf5s(){
 int[200] res;

 for (int i = 0 ; i < 200 ; i++){

 res[i] = 5;

 }

 return res;

}

main(){

 int[200] fives = getArrayOf5s();

}

10

Would like res
allocated in the
callee but alive
in the caller

The Heap: Basic Idea
Heap Management

Disassociate memory region from ARs

11

rsp

stack

res

fn2 AR

.text

……

fn 1 code

Memory snapshot

fn 2 code

…

globals

g

free

Obj * g;
Obj * fn1(){
 Obj * obj1 = new Obj();
 return obj1;
}
void fn2(){
 Obj * res = fn1();
 Obj * obj2 = new Obj();
 g = new Obj();
}

obj2 books
rbp

The Heap: Basic Idea
Heap Management

Disassociate memory region from ARs

12

rsp

stack

res

fn2 AR

.text heap

……

fn 1 code

Memory snapshot

fn 2 code

…

globals

g

free

Obj

Obj * g;
Obj * fn1(){
 Obj * obj1 = new Obj();
 return obj1;
}
void fn2(){
 Obj * res = fn1();
 Obj * obj2 = new Obj();
 g = new Obj();
}

obj2

0x60

books
rbp

obj1 books

fn1 AR

0x60

The Heap: Basic Idea
Heap Management

Disassociate memory region from ARs

13

rsp

stack

res

fn2 AR

.text heap

……

fn 1 code

Memory snapshot

fn 2 code

…

globals

g

free

Obj

Obj * g;
Obj * fn1(){
 Obj * obj1 = new Obj();
 return obj1;
}
void fn2(){
 Obj * res = fn1();
 Obj * obj2 = new Obj();
 g = new Obj();
}

obj2

0x60

books
rbp

0x60

The Heap: Basic Idea
Heap Management

Disassociate memory region from ARs

14

rsp

stack

res

fn2 AR

.text heap

……

fn 1 code

Memory snapshot

fn 2 code

…

globals

g

free

Obj

Obj * g;
Obj * fn1(){
 Obj * obj1 = new Obj();
 return obj1;
}
void fn2(){
 Obj * res = fn1();
 Obj * obj2 = new Obj();
 g = new Obj();
}

obj2

0x60

books
rbp

0x70
Obj

0x70

0x60

The Heap: Basic Idea
Heap Management

Disassociate memory region from ARs

15

rsp

stack

res

fn2 AR

.text heap

……

fn 1 code

Memory snapshot

fn 2 code

…

globals

g
0x80

free

Obj

Obj * g;
Obj * fn1(){
 Obj * obj1 = new Obj();
 return obj1;
}
void fn2(){
 Obj * res = fn1();
 Obj * obj2 = new Obj();
 g = new Obj();
}

obj2

0x60

books
rbp

0x70
Obj

0x70

0x60
Obj

0x80

16

About the Heap
Heap Management

Appropriately named:

• Not as well-ordered
compared to the stack

Benefits

• Reduces data copied
between caller and callee

17

About the Heap
Heap Management

rsp

stack

res

fn2 AR

code segment heap

……

fn 1 code

Memory snapshot

fn 2 code

…

globals

g
0x80

free

Obj obj2

0x60

books
rbp

0x60
Obj

0x70

0x70
Obj

0x80

Obj * g;

Obj * fn1(){

 Obj * obj1 = new Obj();

 return obj1;

}

void fn2(){

 Obj * res = fn1();

 Obj * obj2 = new Obj();

 g = new Obj();

}

Appropriately named:

• Not as well-ordered
compared to the stack

Benefits

• Reduces data copied
between caller and callee

18

About the Heap
Heap Management

Appropriately named:

• Not as well-ordered
compared to the stack

Benefits

• Reduces data copied
between caller and callee

• Flexible lifetime

• Allows for various non-
stack abstractions

19

Heap-Appropriate Abstractions
Heap Management

Some Functions don’t fit the tradition stack-
based lifecycle

• First-class functions

• Function closures

Simply allocate the closure on the heap

def outer {

 int a;

 def inner(){

 a = 1;

 }

 return inner;

}

Heap Allocation
Heap Management

Naïve approach 1:

• Allocate all process memory at load time

• Incredibly wasteful (probably not even possible)!

A modern 64-bit OS will actually limit heap / stack
size to discrete, never-overlapping segments

• This might seem like a limitation – it isn’t

20

264 bytes > 18 million terabytes of RAM

21

Managing the Heap
Heap Management

Only use the memory you need

• The whole point is to allocate memory dynamically

Memory

Heap Allocation: brk / sbrk
Heap Management

Linux syscall for growing the heap

• int brk(void *addr);

 - Set the position of the program break

 - Linux: when addr is 0, returns current program break

22

stack
“budget”
remaining

Stack Segment (doesn’t grow)

AR1

freeheap

AR2AR3

rsp rbpprogram
break

Heap Allocation
Heap Management

Naïve approach 2:

• Ask the OS to allocate exactly the number of bytes
we need for each new object

• Very slow!

23

stack
“budget”
remaining

Stack Segment (doesn’t grow)

AR1

freeheap (grow per object) ->

AR2AR3

rsp rbp

Naïve Scheme

stack
“budget”
remaining

Stack Segment (doesn’t grow)

AR1

free

AR2AR3

rsp rbpprogram
break

Better Scheme (another budget)

heap
“budget”
remaining

heap (grow in chunks) ->

Object 3Object 2Object 1

program
break

Object 3Object 2Object 1

Heap Deallocation
Heap Management

When the heck do you free up heap memory?

24

Obj * g;

Obj * fn1(){

 Obj * obj1 = new Obj();

 return obj1;

}

void fn2(){

 Obj * res = fn1();

 Obj * obj2 = new Obj();

 g = new Obj();

}

Obj * g;

Obj * fn1(){

 Obj * obj1 = new Obj();

 return obj1;

}

void fn2(){

 fn1();

 Obj * obj2 = new Obj();

 g = new Obj();

}

Heap Deallocation
Heap Management

When the heck do you free up heap memory?

Whose job is it?

• Simplest approach: rely on the programmer

25

Heap Deallocation
Heap Management

When the heck do you free up heap memory?

Whose job is it?

• Simplest approach: rely on the programmer
• The C/C++ way

• Still some complexity in managing the heap
• Heap compaction

• “Modern” approach: free heap space automatically

26

Heap Management Terminology
Heap Management

• Cells: data items on the heap
• Cells are pointed to by other cells, or by registers, stack

pointers, global variables

• Roots: registers, stack pointers, global variables

• A cell is live if it pointed to by a root or another live
cell

27

Garbage Collection
Heap Management: Garbage Collection Overview

• Garbage: A memory block
that cannot be (validly)
accessed by the program
• Obviously: a cell that is no

longer live

• Less Obviously: An explicitly
deallocated cell still pointed-to

• Garbage collection:
Automatically reclaiming
garbage for use in future
allocation

28

Garbage Collection: Considerations
Heap Management: Garbage Collection Overview

Because it’s automatic it can be unpredictable
• It better not be too disruptive to performance

• It better be correct
• Don’t deallocate live cells / minimize memory leaks

29

Garbage Collection: Real-Time Issue
Heap Management: Garbage Collection

Because it’s automatic it can be unpredictable

• When is the garbage collector kick in?

• How long will it take to run?

30

The software product may contain support for programs written in Java. Java
technology is not fault tolerant and is not designed, manufactured, or
intended for use or resale as on-line control equipment in hazardous
environments requiring fail-safe performance, such as in the operation of
nuclear facilities, aircraft navigation or communication systems, air traffic
control, direct life support machines, or weapon systems, in which the failure
of Java technology could lead directly to death, personal injury, or severe
physical or environmental damage.

- From the Windows EULA

Today’s Outline
Heap Management: Garbage Collection

Heap Memory

• Using the heap

• OS interface

Garbage collection

• Reference Counting

• Mark and Sweep

31

Machine Codegen

Naïve Reference Counting
Heap Management: Garbage Collection

Associate a count with
each Heap cell

• When a pointer is
assigned to the cell,
increment count

• When a pointer leaves
scope (i.e. dies),
decrement count

Predictable, fairly fast

• Used by C++ smart
pointers / Python

32

1

2

11

1 2 1

1

root
set

(null) (null) (null)

0

1

Naïve Reference Counting: Limitations
Heap Management: Garbage Collection

Space Overhead

• 1 counter per cell

Time Overhead

• Fix up counts

• Check for self-loops

Potential leaks

• Cycles

33

Reference Counting: Summary
Heap Management: Garbage Collection

Associate a count with each Heap cell

• When a pointer is assigned to the cell, increment the count

• When a pointer goes out of scope/goes dead, decrement the count

Pretty predictable, relatively fast

• Used by C++ smart pointers / Python

34

Mark and Sweep
Heap Management: Garbage Collection

“Lazy” garbage collection

• (Can be) performed
when needed

Two-phase approach:

• Mark – Traverse
memory from the roots,
set a “mark bit” on
each cell

• Sweep – Free all
memory that wasn’t
marked

35

root
set

(null) (null) (null)

Mark and Sweep - Tradeoffs
Heap Management: Garbage Collection

Space Overhead - Low

• Only need 1 bit per cell

Time Overhead - High

• Need to traverse all data
structures

36

Summary
Heap Management: Garbage Collection

Compiler-adjacent topic

• Probably implemented in a library and linked into the code

• Still an important aspect of the design and implementation of a
language!

Finished the basic workflow for the compiler!

37

Next Time
Lecture Preview

How do we go from assembly code to an executable?

• The postcompilation toolchain
• The assembler

• The linker

• The loader

38

	Slide 1: Check-in 30 Review – Other Codegen
	Slide 2: Check-in 30 Solution Review – Other Codegen
	Slide 3: Announcements Administrivia
	Slide 4: Heap Management
	Slide 5: Previously… Other Code Generation
	Slide 6: Today’s Outline Heap Management
	Slide 7: The Stack “Budget” Heap Management – Heap Memory
	Slide 8: When the Stack isn’t enough Heap Management – Heap Memory
	Slide 9: Don’t Forget the Heap! Heap Management – Heap Memory
	Slide 10: Expressiveness/Efficiency Limitations Heap Management
	Slide 11: The Heap: Basic Idea Heap Management
	Slide 12: The Heap: Basic Idea Heap Management
	Slide 13: The Heap: Basic Idea Heap Management
	Slide 14: The Heap: Basic Idea Heap Management
	Slide 15: The Heap: Basic Idea Heap Management
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Heap Allocation Heap Management
	Slide 21
	Slide 22: Heap Allocation: brk / sbrk Heap Management
	Slide 23: Heap Allocation Heap Management
	Slide 24: Heap Deallocation Heap Management
	Slide 25: Heap Deallocation Heap Management
	Slide 26: Heap Deallocation Heap Management
	Slide 27: Heap Management Terminology Heap Management
	Slide 28: Garbage Collection Heap Management: Garbage Collection Overview
	Slide 29: Garbage Collection: Considerations Heap Management: Garbage Collection Overview
	Slide 30: Garbage Collection: Real-Time Issue Heap Management: Garbage Collection
	Slide 31: Today’s Outline Heap Management: Garbage Collection
	Slide 32: Naïve Reference Counting Heap Management: Garbage Collection
	Slide 33: Naïve Reference Counting: Limitations Heap Management: Garbage Collection
	Slide 34: Reference Counting: Summary Heap Management: Garbage Collection
	Slide 35: Mark and Sweep Heap Management: Garbage Collection
	Slide 36: Mark and Sweep - Tradeoffs Heap Management: Garbage Collection
	Slide 37: Summary Heap Management: Garbage Collection
	Slide 38: Next Time Lecture Preview

