Check-In #27

Review: Activation Records

Show the layout of an activation record with two 64-bit locals. Write the function prologue
and epilogue corresponding to that function

Check-In #27 Solution

Review: Activation Records

Announcements

Administrivia

P5 outdated instructions

B Un.i'versity of Kansas | Drew Davidson

I - B

MM H v H- ' !—ﬁ'-_ N,

CONSTY l.' TION

Stateme/r—wt Code Generahon
s

Last Lecture

Activation Records

Managing the Stack
* Managing data
* Managing control

Architecture

Big Picture: Architecture Aims and Means

Review: Activation Records

Big Picture: Architecture Aims and Means

Review: Activation Records

Aim: Simulate source code concepts

Means: Leverage x64 capabilities
Functions with local variables

A region of available memory bounded by rsp

Call chains subg SX, %rsp: claim X bytes on the stack
addq SX, %rsp: free X bytes on the stack
movq(%rsp): access top of stack
Divide used memory into frames, one frame
per function invocation

Program memory

%rsp

Address Address Address Address Address Address Addres

Track the base of the current frame with %rbp
0x9006 0x9007 0x9008 0x9009 O0x900A 0x900B

!
0x900C

Store return address and previous frame base

in the activation record

<- Stack |

Big Picture: Architecture Aims and Means

Review: Activation Records

Two useful instructions for manipulating stack memory

pushq <opd> - decrement %rsp by 8, place opd in memory at %rsp location
popq <opd> - read value at %rsp location, incremenent %rsp by 8

Two useful instructions for simulating call chains
callg <Ibl> - effectively does pushq the return point instruction’s address, then sets %rip to <lbl>

retq — effectively does popq %rip

Maintaining Activation Records

Review: Activation Records

Each activation record can store...
e Local data for a function invocation
* Enough bookkeeping to restore the caller’s frame

AR setup / break-down

e Claim AR memory with the function prologue at entry to each function

pushq %rbp
movq %rsp, %rbp
addq $S16, %rbp
subq SX, %rsp

* Release AR memory with the function epilogue at exit point of the function
addq SX, %rsp

popq Srbp
retq

Addressing modes

Toward l.ocal Variables

Some Nice “Shortcuts”

* Often want to read memory at a fixed
offset from some register

“the memory at 8 bytes before %rbp”
* Good news! X64 can do that:
movqg -8 (%rbp), %Srax
* This is a very handy addressing mode
leag -8 (%rbp), %Srax

Managing the Stack

* Managing data

* Managing control

Last Lecture

Activation Records

-

o

You Should Know

How to code up stack frames
The function prologue
The function epilogue

Architecture

11

Where We're At

Progress Pics

Assembled quite a few x64 concepts

e Basic data manipulation (movq)

* Basic math (addq, idivqg, etc)

* Global data (.data, .quad, .byte)

* Local data

* Function calls

This is really all we need for a basic language!

12

g : 1int;
v o: () —>
local

k :int;
local =
}
main : ()
locl
loc?2

A Less-Trivial x64 Program

Working with Activation Records

, .data
9 ¢ eeed—g—o !1/hm1 67
void { .globl main
- .Lext
int;
fn v: pushg %rbp
movqg %rsp, srbp
g - L |4 adda $16, %rbp
W{Y subg $16, %rsp
-> int { YO{%{ movqg (g), S%rax
int; subg $1, %rax
int; movqg %rax, -24(%rbp)
addg $16, %rsp
v7retq

maln: pushg Srbp
movqg srsp, srbp

M addg $16, %rbp
h ? subg $16, Srsp

movqg $2, (g)

YQQXU callg fn v
addg $16
retg

13

COMPILER

Yute .‘l'.ll el
L Ll A

Semantic
Analysis

& -
o
A egular =

/ Languages .

Lexical
Analysis

o

:. A \“'

Lecture Outline

Statement Code Generation

From Quads to Assembly
* Approach Overview

* Planning out memory

* Writing out x64

Code generation

15

Representing Abstract Constructs

Statement Code Generation

Combine (simple) target
language constructs...

...to build (complex) source
language constructs

16

Our Approach: Small Steps

Code Generation

2 passes over IRProgram (like passes over AST)
1. Allocate memory for opds (data pass)
2. Generate code for quads (code pass)

17

Code Generation Objectives

Designing Code Genemtors

* Two high level goals:
— Generate correct code ¢=m
— Generate efficient code

migaion /MG

e |t can be difficult to achieve both at once

— Efficient code can be harder to understand
— Efficient code may have unanticipated side effects

18

Our Approach: Small Steps

Code Generation

2 passes over IRProgram (like passes over AST)

1. |Allocate memory for opds (data pass) \\/ Preparing the

2. Generate code for quads (code pass) /3AC memory
ayout

19

Variable Allocation

Code Generation

Big picture:

* Every variable needs space in enough space in memory for its type

e Every quad using that variable needs to access the same location

Need a mix of static/dynamic allocation

* Put globals/strings at fixed addresses in memory (absolute locations)

* Put locals/formals at stack offsets in memory (relative locations)

Program memory

Address Address Address Address Address Address

%rsp

Address Address

caller

%rbp %rsp

Address Address

Address

Address Add ress:'

caller
%rbp

0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008 0x0009 Ox000A O0x000B O0x000C
| (instructions) | intl6g | intlé v save |P |[save BP int16 k save IP ||save BP
Vot | “vars | Creeoieos | Colecdiaionfeod
code vars
code data Heap <- Stack

20

Allocation: In Code (suggestion)

Code Generation

Add a location field (std::string) to semantic symbols

* All related SymOpds have pointers to the same symbol
Location can be a string

* For globals, the label that you’ll write
* For locals, the stack offset you’ll arrange

Variable Allocation: Globals

Code Generation

3AC Code X64 Code
... in .data section ...

= 4
r\/[g] gbl g: .quad 0

location:) -
At label Where g is a global int

gbl_g

... somewhere in .text section ...

movqg $4, (gbl g)

Compiler Data Structure

SemSymbol

kind: var

type: int
IR globals location: “gbl_g”

Program
LitOpd
Iocals{ (none) P

val: 4
Procs EnterQuad
main

———quads- AssignQuad B N

dst src

22

Variable Allocation: Locals

Code Generation
3AC Code X64 Code
{’\/[v] e= 7 ... assume stack frame setup ...
on- ... somewhere in main’s asm ...
/thlon' Where v is a local int
t offset .
-24(%rbp) movqg $7, -24 (%rbp)
Compiler Data Structure SemSymbol

kind: var

type: int
IR —— globals { (none) location: “-24(%rbp)”
Program

———locals { LitOpd
main
———quads- AssignQuad M N

dst src
23

Our Approach: Small Steps

Code Generation

2 passes over IRProgram (like passes over AST)
1. Allocate memory for opds (data pass)

2. |Generate code for quads (code pass) \\/ Write the

assembly

file

24

Assembly Directives/Initialization

Code Generation

We're gonna write the whole file in one shot
* Aided greatly by our preparatory layout pass
* Also aided by the assembler

Write out .data section:

.data
.globl: main
<globall label> : <globall type> <globall val>

<globall label> : <globall type> <globall val>

Walk each 3AC Procedure, output each quad

enter main

Generating Code for Quads

Code Generation

Generating Code for Quads

Code Generation

enter <proc>

leave <proc>

<opd> := <opd>

<opd> := <opr> <opd>
<opd> := <opd> <opr> <opd>
<lIbl>: <INSTR>

ifz <opd> goto <Ibl>

goto Li

nop

call <name>
setin <int> <operand>

getin <int> <operand>
setout <int> <operand>

getout <int> <operand>

Generating Code for Quads: enter/leave

Code Generation
enter <proc>

On entry to the function: T leave <proc> —

. . Prologue Epilogue
[J

Set up the activation record pushq—g—%rbp ad—p—g—dq X %o
On exit from the function movq %rsp, %rbp popq %rbp
addq $16, %rbp retq

* Break down the activation record subq SX, %rsp

Make function prologue/epilogue

Generating Code for Quads: enter/leave

src code

int main(){

}

3ac code

enter main
leave main

Code Generation
T enter <proc>
leave <proc> j
q Prologue Epilogue
asm toce pushqg %rbp addq SX, %rsp
Ibl_main: pushq %rbp movq %rsp, %rbp popq %rbp
movq %rsp, %rbp addq $16, %rbp retq

addq S16, %rbp
subq SO, %rsp
addq SO, %rsp
pushq %rbp
retq

subq SX, %rsp

Generating Code for Quads

enter <proc>

leave <proc>

<opd> := <opd>

<opd> := <opr> <opd>
<opd> := <opd> <opr> <opd>
<lIbl>: <INSTR>

ifz <opd> goto <Ibl>

goto Li

nop

call <name>
setin <int> <operand>

getin <int> <operand>
setout <int> <operand>

getout <int> <operand>

Code Generation

For assighment-style quads...
1) Load operand src locations into registers
2) Compute a value to register

3) Store result at dst location

3AC
[a] :=[b] +4

ASM

1) movqg —24 (srbp),

1) movg $4, %$rbx
2) addg %rbx %rax

Assignment-Style Quads

$rax

3) movg %rax (gbl a)

Code Generation

For assighment-style quads...
1) Load operand src locations into registers
2) Compute a value to register

3) Store result at dst location

Questions?

Code Generation

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Statement Code Generation
	Slide 5
	Slide 6: Big Picture: Architecture Aims and Means Review: Activation Records
	Slide 7: Big Picture: Architecture Aims and Means Review: Activation Records
	Slide 8: Big Picture: Architecture Aims and Means Review: Activation Records
	Slide 9: Maintaining Activation Records Review: Activation Records
	Slide 10
	Slide 11
	Slide 12
	Slide 13: A Less-Trivial x64 Program Working with Activation Records
	Slide 14
	Slide 15: Lecture Outline Statement Code Generation
	Slide 16: Representing Abstract Constructs Statement Code Generation
	Slide 17: Our Approach: Small Steps Code Generation
	Slide 18: Code Generation Objectives Designing Code Generators
	Slide 19: Our Approach: Small Steps Code Generation
	Slide 20: Variable Allocation Code Generation
	Slide 21: Allocation: In Code (suggestion) Code Generation
	Slide 22: Variable Allocation: Globals Code Generation
	Slide 23: Variable Allocation: Locals Code Generation
	Slide 24: Our Approach: Small Steps Code Generation
	Slide 25: Assembly Directives/Initialization Code Generation
	Slide 26: Generating Code for Quads Code Generation
	Slide 27: Generating Code for Quads Code Generation
	Slide 28: Generating Code for Quads: enter/leave Code Generation
	Slide 29: Generating Code for Quads: enter/leave Code Generation
	Slide 30: Generating Code for Quads Code Generation
	Slide 31: Assignment-Style Quads Code Generation
	Slide 32: Questions? Code Generation

