This Time

Lecture Outline — ISAs

Write 3AC code for the following program
int v(int a, int b) {
1f (a > 1) {
1f (b < 3){

return a + b;

; [?réW' Davidson | Uni\/er;s.jty of Kangas - -

Consh cmm

Instruction Set Architectures
\ s

Runtimes

Last Time

Lecture Review - Runtimes

e Runtime Environments

Tradeoff between what’s done
dynamically vs statically

e Hardware Intuition

Memory is a big 1D array

-

-

You Should Know
Different runtime environment types
* Advantages/Disadvantages
Compiling vs Interpreting

~

Runtime
Environments

This Time

Lecture Outline — ISAs

Instruction-Set Architectures

[* Introduction]
* What an ISA does
* Our target ISA: x64
* Writing x64

Architecture

4

Hardware Capabilities

ISAs - Intro

Computers can store binary
sequences in memory

* An entire program thus
needs to be mapped to
binary sequences w

Electrical
Engineers

WY.S.[.N.W.Y.X

ISAs - Introduction

What You See (in source code) Is
Not What You eXecute

— Many of our abstractions lack explicit
representation in machine code

WYSI

WYX: What You See Is Not What You eXecute

G. Balakrishnan', T. Reps'*. D. Melski®, and T. Teitelbaum®

' Comp. Sci. Dept., University of Wisconsin; {bgogul.reps}@es.wisc.edu
* GrammaTech, Inc.; {melskitt }@grammatech.com

Abstract. What You See Is Not What You eXecute: computers do not execute source-code
programs: they execute machine-code programs that are generated from source code. Not
only can the WYSINWYX phenomenon create a mismatch between what a programmer
intends and what is actually executed by the processor, it can cause analyses that are per-
formed on source code to fal to detect certain bugs and vulnerabilities. This 1ssue arises

regardless of whether one’s favorite app 10 assuring that prog behave as desired
is based on theorem proving, model checking, or abstract interpretation.

1 Introduction

Recent research in programming languages, software engineering, and computer secu-
rity has led to new kinds of tools for analyzing code for bugs and security vulnerabilities
[23.41.18,12.8,.4,9,25, 15]. In these tools, static analysis is used to determine a con-
servative answer to the question “Can the program reach a bad state? However, these
tools all focus on analyzing source code written in a high-level language, which has
certain drawbacks. In particular, there can be a mismatch between what a programmer
intends and what is actually executed by the processor. Consequently, analyses that are
performed on source code can fail to detect certain bugs and vulnerabilities due to the
WYSINWYX phenomenon: “What You See Is Not What You eXecute”. The following
source-code fragment, taken from a login program, illustrates the issue [27]:
memset (password, ‘\0’, len);
free (password);

The login program temporarily stores the user’s password—in clear text—in a dynam-
ically allocated buffer pointed to by the pointer variable password. To minimize the
lifetime of the password, which is sensitive information, the code fragment shown above
zeroes-out the buffer pointed to by pas sword before returning it to the heap. Unfortu-
nately, a compiler that performs uscless-code elimination may reason that the program
never uses the values written by the call on memset, and therefore the call on memset
can be removed—thereby leaving sensitive information exposed in the heap. This is
not just hypothetical: a similar vulnerability was discovered duning the Windows secu-
rity push in 2002 [27]. This vulnerability is invisible in the source code: it can only be
detected by examining the low-level code emitted by the optimizing compiler.

The WYSINWYX phenomenon is not restricted to the presence or absence of pro-
cedure calls; on the contrary, it is pervasive:

— Bugs and security vulnerabilities can exist because of a myriad of platform-specific
details due to features (and idiosyncrasics) of compilers and optimizers, including

* Static analysis provides a way to obtain information about the possible states that a pro-

gram reaches during execution, but without actually running the program on specific inputs.
Static-analysis techniques explore the program’s behavior for alf possible inputs and alf pos-
sible states that the program can reach. To make this feasible, the program is “run in the
aggregate”™—i.e., on descriptors that represent collections of memory configurations [13].

Hardware Generally Has...

ISAs - Introduction

e Limited number of very fast
registers with which to do
computation

Computer Memory Hierarchy

 Comparatively large region
of memory to hold data

 Some basic instructions
from which to build more ...
complex behaviors

Missing Abstractions of Machine Code

ISAs - Introduction

* Loops

* Opcodes
* Registers

* Byte-addressable
memory

* Expressions
e Variables
* Scope

* Functions

Programs as Numeric Sequences

ISAs - Introduction

We gotta encode the whole dang program into a 1D-array!
 Encode data as binary sequences
* Encode instructions as binary sequences

Address Address Address Address Address Address Address Address Address Address Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008 0x0009 0x000A

0Ox44 Ox01 | 0x02 0x44 | Ox01 0x03 Ox07 | 0x00 0Ox00 | Ox00 0x03

Need to use the
same space for
many things

Memory: Intuition

ISAs — Hardware Features

* Cells have a (numeric) address and hold (numeric) value
* We can think of program memory as a big ol’ 1D-array

Address Address Address Address Address Address Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006

Ox4 Ox4 Ox2 Ox6 Ox2 0x3 0x5 \
a b

* Data access is like indexing into that array lal = (D]
memoryfa] memory[b]

assume a takes up address 0x0001
assume b takes up address 0x0005

Address Address Address Address Address Address Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006

Ox4 Ox2 Ox6 Ox2 O0x3 Ox5
a b

10

Registers: Intuition

ISAs — Hardware Features

e Specialized, super-fast circuitry

e Computation must be done on registers
.

3AC code Correspoiiding Hardware tasks

[a] := [b] + [c] et operand 1 into a register \

Get operand 2 into another register

Store destination register back to memary /\/

Address Address Address A ss Address Address Address ddress Address Address Address
0x0000 0x0001 0x0002 x00 0x0004 0x0005 0x0006 , 0x000y 0x0008 O)tﬁél@ 0x000A

0x44 0Ox01 | 0x02 \Qx4lb 0Ox01 0x03 0x07 Ox9(‘ 0x00 OxOO) 0x03
~—/ N~ 11

This Time

Lecture Outline — ISA Hardware Features

Instruction-Set Architectures
* Introduction

* What an ISA does]

* Our target ISA: x64
* Writing x64

Architecture

12

Processors Conform to ISAs

ISAs — Hardware Features

* Upon encountering a byte 4 N
sequence an ISA-conformant You're speakin’
“knows” how to interpret my language!
the sequence

e Still has some flexibility on
how to execute it, specified
via the microarchitecture

An ISA specifies

* How data is encoded

e Instructions that can transform
data

* Opcodes for how instructions
are encoded

* Program state

The [SA Contract

ISAs - Intro

Software

ISA: A contract of hardware aspects

14

Instruction Set Architectures

ISAs - Intro

An ISA specifies Hypothetical ISA

-2 isencoded as 1110
-1is encoded as 1111
8 is encoded as 1000

12 is encoded as 1100

* How data is encoded oo

* |nstructions that can transform ----------------- The INC_ADDR <X> instruction
data increments the value at

memory address <X>

e Opcodes for how instructions - INC_ADDR 8 is encoded as 1010
are encoded

* Program state ---------mooeeeeeeeomss e Next instruction to execute
is stored in register |

Completely Hypothetical ISA Example

ISAs - Intro
-2 isencoded as 1110 The INC_ADDR <X> INC ADDR 8 Next instruction
-lisencodedas 1111 increments the value at encoded as to execute
8 isencoded as 1000 memory address <X> 1010 stored in Register K

12 is encoded as 1100

F

/hjg{Cb: the

:L/C‘l"/'of7 ot
€ess 12

Register K: | 1100

T

Address Address Address Address Address Address Address Address Address Address Address Address

Ox8 O0x9 OxA OxB 0xC 0xD OxE OxF 0x10 0x12 0x13 0x14
.| 4, 4,] o, |[1 | o 1 o || 1 | o 1 0
th e 4-bitl
Adre 2 '€ valye ot Decode th S IN ’ADDR 8
©-2 gt address 121

16

More Realistic Encodings

ISAs - Intro

The previous ISA uses
unrealistic encodings

* Let’s consider some more
likely choices

17

Encoding Data: Granularity of Access

ISAs - Intro

How “big” is a memory cell?

Let’s say we’re storing the byte 0x61 = 01100001

Bit-addressable

Address Address Address

Address Address Address Address Address Address Address Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008 0x0009 0x000A
0 1 0 0 0 1 0 0 0 0 0

Byte-addressable

Address Address Address Address Address Address Address Address Address Address Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008 0x0009 Ox000A

Ox44 | Ox01 | Ox02 | Ox44 | Ox01 |0Ox03 O0x07 | Ox00 | Ox00 | Ox00 | Ox03

Could even go bigger?
But why (and why not)?

Data Encodings

You should already know
the basic idea here

* Type dictates numeric
representation

* Devote a certain size (in
bits) to representation

e Use binary hardware to
store the numeric value

ISAs - Intro

Bit Sequence (binary)

01000011 01001111 01001111 01001100

Byte Sequence (Hex)
0x43 Ox4F Ox4F 0x4C

ASCII Value: char type (8 bits, i.e. 1 byte)

ICI IOI IOI IL’

Integer Value: int32 type (bi}ﬂwﬂ\/
OxéZéMl Y

/o

1,129,271,105

Convention: Memory Regions

ISAs - Intro

Portions of memory “zoned” by purpose
Simplest form:

 Code region

* Data region

* Therestis free space

Memory

Address Address Address Address Address Address Address Address Address Address Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008 0x0009 0x000A

code data free

Data Sub-Regions

ISAs - Intro

Further break up data region for
different kinds of data

 Global variables
* Local variables
e Objects

21

This Time

Lecture Outline — About x64

Instruction-Set Architectures
* Introduction
e What an ISA does

+ Our target ISA: x64 |

* Writing x64

Architecture

22

Our ISA: x64

ILecture Outline — About x64

* Probably the most popular architecture in modern use
* Almost certainly what your computer is running
* Definitely what the cycle servers are running

X86 and x64: A Reputation for Difficulty

Lecture Outline — About x64

Highly complex
instruction set

e ~1000 different
instructions via the
most conservative
count™

e Some instructions
context-sensitive
(i.e. work differently

based on preceding

instru ctions) *that we don’t have a canonical
instruction count
is already a pretty bad sign

24

X64 Registers

Lecture Outline — About x64

rbx

rcx

rdx

rsi

rdi

rbp

rsp

r08 —r15
rip

rflags

O N O U B W N — O

I

Computation Accumulator
Computation Base

Computation counter

Data for I/O

String source address

String destination address

Base pointer (base of the stack)
Stack pointer (edge of the stack)
True general purpose registers _
Instruction pointer

Status flags

Can be used in
Instruction opcodes

= Cannot be used in

instruction opcodes

25

x64 Register Compatibility

Lecture Outline — About x64

Register #0 — the “A” register

byte8 i byte7 i byte6 i byte5 i byted4 i byte3 ! byte2 i bytel

This Time

Lecture Outline — Writing x64

Instruction-Set Architectures
* Introduction
* What an ISA does
* Our target ISA: x64
[* Writing x64]

Architecture

27

Stepping Back From Binary

Lecture Outline —Writing x64

Dealing with binary directly is
tedious and error-prone

* Laying out code / data is super
difficult to do manually

« Remembering the binary opcode
sequence for every instruction is
difficult

Fortunately, we don’t have to do
that

28

Write low-level textual
mnemonics (assembly
code)

* Assembly code isn’t
directly executable

* Nearly 1-1 with the
binary encoding

* Different assemblers,
different syntax

The Assembler

Lecture Outline —Writing x64

2

t

Assembler

29

ASM [nstruction Syntax

Lecture Outline —Writing x64

As with everything x86-related, it’s complicated

 We'll use the AT&T Syntax:

<opcode><sizesuffix> <src operand(s)> <dst operand>
* Immediates (i.e. constant values) prefixed by S
* Registers prefixed by %
* Memory lookup (i.e. dereference) in parens

movg $5, (%rax)

mov the 64-bit value 5 into the 64-bit
memory address specified by register rax

Directives

Lecture Outline —Writing x64

* Indicates a command to the assembler
* Layout, program entrypoint, etc.

Example:
.globl X

Indicates that symbol X is visible outside of the file

Segment Directives

Lecture Outline —Writing x64

.Lext

Lay out items in the

user text segment

Instructions go here

.data

Lay out items in the
data segment

Globals go here

-

reg0 regl reg2 reg3 regl regs

0x2000 0x2001 0x2002 0x2003 0x2004 0x2005 0x2006 0x2007 0x2008 0x2009 Ox200A 0x200B

Ox44 | Ox02 | Ox03 ||| Ox68 | 0x65 | Ox6c || Ox6c | Oxb6f 0x77 | Oxé6f 0x72 | Ox6c¢
code global data heap-> || freespace || <-stack |

~

32

Labels

Lecture Outline —Writing x64

* The assembler allows us to
specify “placeholder”
addresses that will be used jmp LBL1
later .

 Translated to “real”
addresses by a utility called
the linker

. i 12d34 7
e Valid for both data and jmp Ox12d34a5678a
code locations

LBL1: movq S5 (%rax)

$rax
Srdi

System Calls

Lecture Outline —Writing x64

To interact outside program memory, need the help of the OS

syscall

Which system call (60 is exit)
Set syscall arg - (exit takes the return code)

34

Time to put it all together!

Lecture Outline —Writing x64

Photo Credit: Tim Klein - https://puzzlemontage.crevado.com

35

https://puzzlemontage.crevado.com/

A Complete Program

Lecture Outline —Writing x64

.Text

.globl start

_start:
movg $60, %$rax
movqg $4, %rdi
syscall

Choose syscall exit
Set syscall arg - return code

36

Actually Running a Program

Lecture Outline —Writing x64

Invoking the assembler and linker

as —o start.o start.s
1ld start.o —o prog
./prog

echo $7?

37

summary

ISAs

ISAs

* Provide an interface from software to hardware

 We'll target assembly code, assembler will take it from there
X64

* A popular architecture

* We've covered the basic instruction format and a simple
program

Next Time

ISAs

We’ll dive into more details about X64

	Slide 1: This Time Lecture Outline – ISAs
	Slide 2: Last Time Lecture Review - Runtimes
	Slide 3: Last Time Lecture Review - Runtimes
	Slide 4: This Time Lecture Outline – ISAs
	Slide 5: Hardware Capabilities ISAs - Intro
	Slide 6: W.Y.S.I.N.W.Y.X ISAs - Introduction
	Slide 7: Hardware Generally Has… ISAs - Introduction
	Slide 8: Missing Abstractions of Machine Code ISAs - Introduction
	Slide 9: Programs as Numeric Sequences ISAs - Introduction
	Slide 10: Memory: Intuition ISAs – Hardware Features
	Slide 11: Registers: Intuition ISAs – Hardware Features
	Slide 12: This Time Lecture Outline – ISA Hardware Features
	Slide 13: Processors Conform to ISAs ISAs – Hardware Features
	Slide 14: The ISA Contract ISAs - Intro
	Slide 15: Instruction Set Architectures ISAs - Intro
	Slide 16: Completely Hypothetical ISA Example ISAs - Intro
	Slide 17: More Realistic Encodings ISAs - Intro
	Slide 18: Encoding Data: Granularity of Access ISAs - Intro
	Slide 19: Data Encodings ISAs - Intro
	Slide 20: Convention: Memory Regions ISAs - Intro
	Slide 21: Data Sub-Regions ISAs - Intro
	Slide 22: This Time Lecture Outline – About x64
	Slide 23: Our ISA: x64 Lecture Outline – About x64
	Slide 24: x86 and x64: A Reputation for Difficulty Lecture Outline – About x64
	Slide 25: x64 Registers Lecture Outline – About x64
	Slide 26: x64 Register Compatibility Lecture Outline – About x64
	Slide 27: This Time Lecture Outline – Writing x64
	Slide 28: Stepping Back From Binary Lecture Outline –Writing x64
	Slide 29: The Assembler Lecture Outline –Writing x64
	Slide 30: ASM Instruction Syntax Lecture Outline –Writing x64
	Slide 31: Directives Lecture Outline –Writing x64
	Slide 32: Segment Directives Lecture Outline –Writing x64
	Slide 33: Labels Lecture Outline –Writing x64
	Slide 34: System Calls Lecture Outline –Writing x64
	Slide 35: Time to put it all together! Lecture Outline –Writing x64
	Slide 36: A Complete Program Lecture Outline –Writing x64
	Slide 37: Actually Running a Program Lecture Outline –Writing x64
	Slide 38: Summary ISAs
	Slide 39: Next Time ISAs

