
This Time
Lecture Outline – ISAs

1

Write 3AC code for the following program

int v(int a, int b){

 if (a > 1){

 if (b < 3){

 return a + b;

 }

 }

}

Last Time
Lecture Review - Runtimes

Runtimes

• Runtime Environments

 Tradeoff between what’s done

 dynamically vs statically

• Hardware Intuition

 Memory is a big 1D array

2

Runtime
Environments

You Should Know
• Different runtime environment types

• Advantages/Disadvantages
• Compiling vs InterpretingInstruction Set Architectures

Drew Davidson | University of Kansas

Last Time
Lecture Review - Runtimes

Runtimes

• Runtime Environments

 Tradeoff between what’s done

 dynamically vs statically

• Hardware Intuition

 Memory is a big 1D array

3

Runtime
Environments

You Should Know
• Different runtime environment types

• Advantages/Disadvantages
• Compiling vs Interpreting

This Time
Lecture Outline – ISAs

Instruction-Set Architectures

• Introduction

• What an ISA does

• Our target ISA: x64

• Writing x64

4
Architecture

Hardware Capabilities
ISAs - Intro

Computers can store binary
sequences in memory

• An entire program thus
needs to be mapped to
binary sequences

5

Electrical
Engineers

Computer
Scientists

W.Y.S.I.N.W.Y.X
ISAs - Introduction

6

What You See (in source code) Is
Not What You eXecute

– Many of our abstractions lack explicit
representation in machine code

Hardware Generally Has…
ISAs - Introduction

7

• Limited number of very fast
registers with which to do
computation

• Comparatively large region
of memory to hold data

• Some basic instructions
from which to build more
complex behaviors

Missing Abstractions of Machine Code
ISAs - Introduction

• Loops

• Expressions

• Variables

• Scope

• Functions

8

• Opcodes
• Registers
• Byte-addressable
 memory

Programs as Numeric Sequences
ISAs - Introduction

9

We gotta encode the whole dang program into a 1D-array!
• Encode data as binary sequences
• Encode instructions as binary sequences

Need to use the
same space for
many things

Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0007 0x0008 0x0009 0x000A0x0006

0x44 0x01 0x00 0x00 0x00 0x03

Address Address Address Address Address Address Address Address Address Address

0x070x44 0x01 0x030x02

Memory: Intuition
ISAs – Hardware Features

• Cells have a (numeric) address and hold (numeric) value

• We can think of program memory as a big ol’ 1D-array

• Data access is like indexing into that array

10

[a] := [b]

memory[a] memory[b]

a b

Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006

Address Address Address Address Address Address

0x4 0x2 0x30x4 0x6 0x2 0x5

Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006

Address Address Address Address Address Address

a b

0x3 0x2 0x30x4 0x6 0x2 0x5

assume a takes up address 0x0001
assume b takes up address 0x0005

Registers: Intuition
ISAs – Hardware Features

11

• Specialized, super-fast circuitry

• Computation must be done on registers

Get operand 1 into a register

Get operand 2 into another register

Sum the two registers to a destination register

Store destination register back to memory

[a] := [b] + [c]

Corresponding Hardware tasks3AC code

Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0007 0x0008 0x0009 0x000A0x0006

0x44 0x01 0x00 0x00 0x00 0x03

Address Address Address Address Address Address Address Address Address Address

0x070x44 0x01 0x030x02

Memory: “data at rest”

Registers: “data in flight”

This Time
Lecture Outline – ISA Hardware Features

Instruction-Set Architectures

• Introduction

• What an ISA does

• Our target ISA: x64

• Writing x64

12
Architecture

Processors Conform to ISAs
ISAs – Hardware Features

13

• Upon encountering a byte
sequence an ISA-conformant
“knows” how to interpret
the sequence

• Still has some flexibility on
how to execute it, specified
via the microarchitecture

You’re speakin’
my language!

The ISA Contract
ISAs - Intro

14

Hardware

Software

ISA: A contract of hardware aspects

An ISA specifies

• How data is encoded

• Instructions that can transform
data

• Opcodes for how instructions
are encoded

• Program state

15

Hypothetical ISA

-2 is encoded as 1110
-1 is encoded as 1111
8 is encoded as 1000
12 is encoded as 1100

The INC_ADDR <X> instruction
increments the value at
memory address <X>

INC_ADDR 8 is encoded as 1010

Next instruction to execute
is stored in register I

Instruction Set Architectures
ISAs - Intro

An ISA specifies

• How data is encoded

• Instructions that can transform
data

• Opcodes for how instructions
are encoded

• Program state

Address
0x8 0x9 0xA 0xB 0xC 0xD 0xF0xE

1 1 0

Address Address Address Address Address Address Address

10 1 01 ……

0x10 0x12 0x140x13

0

Address Address Address Address

11 0

Completely Hypothetical ISA Example
ISAs - Intro

16

-2 is encoded as 1110
-1 is encoded as 1111
8 is encoded as 1000

12 is encoded as 1100

The INC_ADDR <X>
increments the value at
memory address <X>

INC_ADDR 8
encoded as
1010

Next instruction
to execute
stored in Register K

Register K: 1100

1111

More Realistic Encodings
ISAs - Intro

17

The previous ISA uses
unrealistic encodings

• Let’s consider some more
likely choices

Encoding Data: Granularity of Access
ISAs - Intro

18

How “big” is a memory cell?

Bit-addressable

Let’s say we’re storing the byte 0x61 = 01100001

Byte-addressable

Could even go bigger?
But why (and why not)?

Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0007 0x0008 0x0009 0x000A0x0006

0 1 0 0 0 0

Address Address Address Address Address Address Address Address Address Address

00 0 10

Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0007 0x0008 0x0009 0x000A0x0006

0x44 0x01 0x00 0x00 0x00 0x03

Address Address Address Address Address Address Address Address Address Address

0x070x44 0x01 0x030x02

Data Encodings
ISAs - Intro

You should already know
the basic idea here

• Type dictates numeric
representation

• Devote a certain size (in
bits) to representation

• Use binary hardware to
store the numeric value

19

0x43

‘C’

0x434F4F41

0x4F 0x4F 0x4C

0100 0011 0100 1111 0100 1111 0100 1100

‘O’ ‘O’ ‘L’

1,129,271,105

Bit Sequence (binary)

Byte Sequence (Hex)

ASCII Value: char type (8 bits, i.e. 1 byte)

Integer Value: int32 type (32 bits, i.e. 4 bytes)

Convention: Memory Regions
ISAs - Intro

20

Portions of memory “zoned” by purpose
Simplest form:

• Code region
• Data region
• The rest is free space

Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0007 0x0008 0x0009 0x000A0x0006

Address Address Address Address Address Address Address Address Address Address

Memory

code data free

Data Sub-Regions
ISAs - Intro

21

Further break up data region for
different kinds of data

• Global variables

• Local variables

• Objects

This Time
Lecture Outline – About x64

Instruction-Set Architectures

• Introduction

• What an ISA does

• Our target ISA: x64

• Writing x64

22
Architecture

Our ISA: x64
Lecture Outline – About x64

23

• Probably the most popular architecture in modern use

• Almost certainly what your computer is running

• Definitely what the cycle servers are running

x86 and x64: A Reputation for Difficulty
Lecture Outline – About x64

Highly complex
instruction set

• ~1000 different
instructions via the
most conservative
count*

• Some instructions
context-sensitive
(i.e. work differently
based on preceding
instructions)

24

*that we don’t have a canonical
 instruction count
 is already a pretty bad sign

Name Number Nominal Purpose

rax 0 Computation Accumulator

rbx 1 Computation Base

rcx 2 Computation counter

rdx 3 Data for I/O

rsi 4 String source address

rdi 5 String destination address

rbp 6 Base pointer (base of the stack)

rsp 7 Stack pointer (edge of the stack)

r08 – r15 8 - 15 True general purpose registers

rip - Instruction pointer

rflags - Status flags

x64 Registers
Lecture Outline – About x64

25

Can be used in
Instruction opcodes

Cannot be used in
instruction opcodes

x64 Register Compatibility
Lecture Outline – About x64

26

Register #0 – the “A” register

rax

eax

ax

alah

byte 8 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1

64

32

16

8

This Time
Lecture Outline – Writing x64

Instruction-Set Architectures

• Introduction

• What an ISA does

• Our target ISA: x64

• Writing x64

27
Architecture

Stepping Back From Binary
Lecture Outline –Writing x64

28

Dealing with binary directly is
tedious and error-prone

• Laying out code / data is super
difficult to do manually

• Remembering the binary opcode
sequence for every instruction is
difficult

Fortunately, we don’t have to do
that

The Assembler
Lecture Outline –Writing x64

Write low-level textual
mnemonics (assembly
code)

• Assembly code isn’t
directly executable

• Nearly 1-1 with the
binary encoding

• Different assemblers,
different syntax

29

Compiler AssemblerCode

ASM Instruction Syntax
Lecture Outline –Writing x64

30

As with everything x86-related, it’s complicated

• We’ll use the AT&T Syntax:
<opcode><sizesuffix> <src operand(s)> <dst operand>

• Immediates (i.e. constant values) prefixed by $

• Registers prefixed by %

• Memory lookup (i.e. dereference) in parens

movq $5, (%rax)

mov the 64-bit value 5 into the 64-bit
memory address specified by register rax

Directives
Lecture Outline –Writing x64

31

• Indicates a command to the assembler
• Layout, program entrypoint, etc.

Example:
.globl X

Indicates that symbol X is visible outside of the file

Segment Directives
Lecture Outline –Writing x64

32

.data

Lay out items in the
data segment

.text

Lay out items in the
user text segment

Instructions go here Globals go here

Labels
Lecture Outline –Writing x64

33

• The assembler allows us to
specify “placeholder”
addresses that will be used
later
• Translated to “real”

addresses by a utility called
the linker

• Valid for both data and
code locations

jmp 0x12d34a5678a

jmp LBL1
…

LBL1: movq $5 (%rax)

System Calls
Lecture Outline –Writing x64

34

To interact outside program memory, need the help of the OS

%rax # Which system call (60 is exit)

%rdi # Set syscall arg – (exit takes the return code)

syscall

35

Time to put it all together!
Lecture Outline –Writing x64

Photo Credit: Tim Klein - https://puzzlemontage.crevado.com

https://puzzlemontage.crevado.com/

A Complete Program
Lecture Outline –Writing x64

36

.text

.globl _start

_start:

movq $60, %rax # Choose syscall exit

movq $4, %rdi # Set syscall arg - return code

 syscall

Actually Running a Program
Lecture Outline –Writing x64

37

Invoking the assembler and linker

as –o start.o start.s

ld start.o –o prog

./prog

echo $?

Summary
ISAs

ISAs

• Provide an interface from software to hardware

• We’ll target assembly code, assembler will take it from there

X64

• A popular architecture

• We’ve covered the basic instruction format and a simple
program

Next Time
ISAs

We’ll dive into more details about X64

	Slide 1: This Time Lecture Outline – ISAs
	Slide 2: Last Time Lecture Review - Runtimes
	Slide 3: Last Time Lecture Review - Runtimes
	Slide 4: This Time Lecture Outline – ISAs
	Slide 5: Hardware Capabilities ISAs - Intro
	Slide 6: W.Y.S.I.N.W.Y.X ISAs - Introduction
	Slide 7: Hardware Generally Has… ISAs - Introduction
	Slide 8: Missing Abstractions of Machine Code ISAs - Introduction
	Slide 9: Programs as Numeric Sequences ISAs - Introduction
	Slide 10: Memory: Intuition ISAs – Hardware Features
	Slide 11: Registers: Intuition ISAs – Hardware Features
	Slide 12: This Time Lecture Outline – ISA Hardware Features
	Slide 13: Processors Conform to ISAs ISAs – Hardware Features
	Slide 14: The ISA Contract ISAs - Intro
	Slide 15: Instruction Set Architectures ISAs - Intro
	Slide 16: Completely Hypothetical ISA Example ISAs - Intro
	Slide 17: More Realistic Encodings ISAs - Intro
	Slide 18: Encoding Data: Granularity of Access ISAs - Intro
	Slide 19: Data Encodings ISAs - Intro
	Slide 20: Convention: Memory Regions ISAs - Intro
	Slide 21: Data Sub-Regions ISAs - Intro
	Slide 22: This Time Lecture Outline – About x64
	Slide 23: Our ISA: x64 Lecture Outline – About x64
	Slide 24: x86 and x64: A Reputation for Difficulty Lecture Outline – About x64
	Slide 25: x64 Registers Lecture Outline – About x64
	Slide 26: x64 Register Compatibility Lecture Outline – About x64
	Slide 27: This Time Lecture Outline – Writing x64
	Slide 28: Stepping Back From Binary Lecture Outline –Writing x64
	Slide 29: The Assembler Lecture Outline –Writing x64
	Slide 30: ASM Instruction Syntax Lecture Outline –Writing x64
	Slide 31: Directives Lecture Outline –Writing x64
	Slide 32: Segment Directives Lecture Outline –Writing x64
	Slide 33: Labels Lecture Outline –Writing x64
	Slide 34: System Calls Lecture Outline –Writing x64
	Slide 35: Time to put it all together! Lecture Outline –Writing x64
	Slide 36: A Complete Program Lecture Outline –Writing x64
	Slide 37: Actually Running a Program Lecture Outline –Writing x64
	Slide 38: Summary ISAs
	Slide 39: Next Time ISAs

