Check-In 20

Review — Runtime Environments

Give an example of a programming language and its runtime environment

Check-In 20

Review — Runtime Environments

Give an example of a programming language and its runtime environment

Announcements

Administrivia

. ._ Un-i'ver_s-ity of Kansas | Drew Davidson

ll-'

MM!V H"!!ﬁr'— NS

CONSTRUCTION

Iptermediate
4
Representations.

Last Time

ILecture Review — Runtime Environments

Runtimes
e Runtime Environments

/ You Should Know \

* What a runtime environment is
* Basic notions of how we might
execute programs
* OS mediation
* Virtual machine

K / Runtimes

COMPILER

AL N MDA e
LOUE 00 g Yo

Syntactic
Definiton

.

Today’s Outline

Lecture Outline — Intermediate Representations

Introduce IRs

 What they are

* How they’re used

Three Address Code (3AC)
* Introduction

* [nventory

Intermediate
Representations

Compiler Construction

Progress Pics
Source code
(sequence of chars)

(Sca:ner
Done: L Lexicalfnalysis)
. f Parser)
i Denved ain AST, L Syntactiianalysis)
augmented Wlth types i Semantic analysis |
and identifier symbols) I i
. In progress Intermediat.e code
* Ensured the program is e
legal to the best of our [Dtz |
abilities !
Final Code
TODQ' L geneiation
Final code
e Get that sucker to run! —_optimization__

[Output codeinT]

IRs: The Big ldea

Intermediate Representations

A big, basic concept
* “Encoding of a program”

* “The output of a compiler
frontend and input of a
compiler backend”

* “What a compiler knows
about a program”

* “A simpler language to
which the source
language is mapped”

Intermediate Representation Benefits

Introducing IRs

Abstraction

* Decouple compiler frontend
from the backend

Analysis

M source languages
N target languages

Write MXN compilers

Sy S, . S,
T, T, .. T,

10

Intermediate Representation Benefits

Introducing IRs

Abstraction

* Decouple compiler frontend
from the backend

constructs over several small

* Break down source language
steps towards target

|

Analysis

Source
Language

R,

R,

Target
Language

11

Intermediate Representation Benefits

Introducing IRs

Abstraction
* Decouple compiler frontend
from the backend Improve".

* Break down source language e Runtime

constructs over several small . M
steps towards target emory usage

Analysis * Power usage

 Optimize programs * Security

Intermediate Representation Benefits

Introducing IRs

Abstraction For example...

 Decouple compiler frontend o typechecking
from the backend

* Break down source language
constructs over several small
steps towards target

Analysis But isn’t this an
* Optimize programs analysis on the AST?

 Predict faults

Intermediate Representation Benefits

Introducing IRs

Abstraction Ear n%
. Decoup{ ASTs are an example of an IR!!

from th

 Breakoc

constru

steps t¢
Analysis

* Optimi

+_ Predic WHATATWIST!

M. Night Shyamalan, famous for
(ill-considered) plot twists in
K movies he writes/directs /

Classes of IR

Introducing IRs

Structural
e Abstract-Syntax Tree (AST)
* Abstract Syntax DAG

———y

Linear
 Three-Address Code (3AC)
 Stack machine code

Hybrid
 Control-Flow Graph

15

Limitations of Trees

Introducing IRs

AST is great for some
things, but not everything

 Doesn’t represent control
flow very well

Compilers could go directly
from AST to machine code

Let’s consider a different IR

16

Today’s Outline

Lecture Outline — Intermediate Representations

Introduce IRs

 What they are

* How they’re used

Three Address Code (3AC)
* Introduction

* [nventory

Intermediate
Representations

17

Introducing 3AC

3AC Description

A Simplified Instruction Set Architecture (ISA)
* A family of pseudocode notations

Like ASTs, there’s no canonical 3AC

We’re more interested in the general idea

Disclaimer

18

Introducing 3AC

3AC Description

A Simplified Instruction Set Architecture (ISA)
* A family of pseudocode notations
* Memory model: infinite “symbolic store”

* Naming a variable adds a location
in the store

 We'll assume that the store can
handle scope

Introducing 3AC

3AC Description

A Simplified Instruction Set Architecture (ISA)
* A family of pseudocode notations
* Memory model: infinite “symbolic store”

* Instruction model: linear instructions divided into
[procedures }

Discrete code listings

From Variables to Locations (“locs”)

3AC Description

A loc is...
* An address in memory (sort of like adding a pointer
level into every access)

* A container for a value

Use [] around loc to | |
denote value at that int a; int * a;

location int = b; int ** b;
a=1; *a=1;

* [a] is the “value at @” ‘b= 2 “xp = 2

21

3AC: What’'s With the Name?

3AC Description
Instructions have at most 3 operands

a =|b +|c * di|- e

becomes

tmpl] := [c] * [d];
tmp2] := [b] + |[tmpl]
tmp3] := |[[tmp2]| - [e];

a] := |[tmp3]j|;

3AC: Instruction Classes

3AC Description

Data flow

* Assignment <opd> := <opd>

* Math/Logic

Opd stands for “operand”

Control flow Literals, variables, etc.
* Labels
) Jumps Example:
Interprocedural [a] =1

[b] = [a]

e Boundaries
 Bodies
e Calls

3AC: Instruction Classes

Data flow

* Assignment

* Math/Logic
Control flow

* Labels

* Jumps
Interprocedural
* Boundaries

* Bodies

e Calls

3AC Description

<opd> := <opd> <opr> <opd>
<opd> := <opr> <opd>

Opd stands for “operand”
Literals, variables, etc.

Opr stands for “operator”
MULT64, DIV64, SUB64, ADD64, etc.

Example:
[a] := 1 MULTo4 2
[b] := [a] SUB64 4

3AC: Instruction Classes

3AC Description
Data flow <Ibl>: <instr>
* Assignment
* Math/Logic i’;—;’g‘;‘%: S
Control flow
 Labels
* Jumps nop
Interprocedural Example:

Labell: nop
* Boundaries

 Bodies
e Calls

3AC: Instruction Classes

Data flow

* Assignment

* Math/Logic
Control flow

* Labels

* Jumps
Interprocedural
* Boundaries

* Bodies

e Calls

3AC Description

goto <Ibl>

Example:
Label?2:

goto Label?2

ifz <opd> goto <Ibl>

Example:

Labell:

ifz

[

[a] :
[a] :

al

1
2

goto Labell

3AC: Instruction Classes

3AC Description

Data flow
* Assignment
* Math/Logic

enter <proc>
leave <proc>

Control flow Example:

. L b | enter fn
abels [global] := 7

° Jumps leave fn

Interprocedural

e Boundaries
 Bodies
e Calls

3AC: Instruction Classes

Data flow

* Assignment

* Math/Logic
Control flow

* Labels

* Jumps
Interprocedural
* Boundaries

* Bodies

e Calls

3AC Description

getarg <idx> <opd>

setret <opd>

Example:

int fn(int a, 1int b) {

}

a = b;
return 42;

Example:
enter fn

getarg 1, [a]
getarg 2, [b]
[a] = [Db]
setret 42
leave fn

1& fog((+ 1) 3AC: Instruction Classes 0,

3AC Description \/ -
U(QL K/‘tV Cq) call <proc> ; {{ Vo ’() {

Data flow .
« Assignment setarg <int><opd> v - Lq/

: etret <opd>
* Math/Logic 5 P S
Control flow Examole: Example: \/ < [)
e Labels int fn(int a, int b) { enter fn /
a = b; getarg 1, [al
* Jumps return 42; getarg 2, [b]
| [a] := [b]
Interprocedural et O cotret 40
* Boundaries int k; leave fn
. k = fn(7, 9); enter v
* Bodies | setarg 1, 7
 Calls setarg 2, 9
call fn
getret [k]

leave v 29

That’s All we Need!

3AC Description

We can build complex
behavior out of these
simple building blocks

e One minor loose end to P
tie up... N
& o
ce

Ny

(@06 ¢

&

00

30

Dealing with Scope

3AC Description

void fn () {
int a;
a = 9;
if (true) {
int a;
a = 6;

enter fn

a'] := 9

Lal Name
[;12] o clash?
leave fn

Only in notation!
These assignment connect to different symbols

We can use superscripts if needed

31

3AC Data Structures

AST Translation to 3AC — Implementation

* One class per 3AC node type
e Often referred to as “Quads” — has at most 4 fields (+ label)
* Each procedure maintains a list of its quads

Ibl dst srcl opr src2

1 G S:f 2

32

Translation Implementation

AST Translation to 3AC — Implementation

Propagate context to parent & generate 3AC instruction(s)

AssignStmt
Ibl dst src; opr src,
a =7+ (a - v) tl a SUB v
¥) (@ 64 (B)
2 _ ADD [t1]
©) 64 ()
[t1] := [a] SUB64 [V] [a] [t2]
[t2] := 7 ADD64 [t1] (a) ()
[a] := [t2]

1 s
1 -7
Vo

Symbol: Symbol: S) Symbol:
Kind: var Kind: var Klnd tmp Kind: tmp
Type: int Type: int Type: int Type: int

Name: a Name: v Name: tmp1l Name: tmp2

33

Next Time

3AC Translation

#1 NEw YORK TIMES BESTSELLING AUTHOR

Translating AST code
into 3AC NICHOLAS

+ A final walk of the AST SPARKS

AR,

A ‘%H{ to Relnelnl)er

34

	Slide 1: Check-In 20 Review – Runtime Environments
	Slide 2: Check-In 20 Review – Runtime Environments
	Slide 3: Announcements Administrivia
	Slide 4: Intermediate Representations
	Slide 5: Last Time Lecture Review – Runtime Environments
	Slide 6
	Slide 7: Today’s Outline Lecture Outline – Intermediate Representations
	Slide 8: Compiler Construction Progress Pics
	Slide 9: IRs: The Big Idea Intermediate Representations
	Slide 10: Intermediate Representation Benefits Introducing IRs
	Slide 11: Intermediate Representation Benefits Introducing IRs
	Slide 12: Intermediate Representation Benefits Introducing IRs
	Slide 13: Intermediate Representation Benefits Introducing IRs
	Slide 14
	Slide 15: Classes of IR Introducing IRs
	Slide 16: Limitations of Trees Introducing IRs
	Slide 17: Today’s Outline Lecture Outline – Intermediate Representations
	Slide 18: Introducing 3AC 3AC Description
	Slide 19: Introducing 3AC 3AC Description
	Slide 20: Introducing 3AC 3AC Description
	Slide 21: From Variables to Locations (“locs”) 3AC Description
	Slide 22: 3AC: What’s With the Name? 3AC Description
	Slide 23: 3AC: Instruction Classes 3AC Description
	Slide 24: 3AC: Instruction Classes 3AC Description
	Slide 25: 3AC: Instruction Classes 3AC Description
	Slide 26: 3AC: Instruction Classes 3AC Description
	Slide 27: 3AC: Instruction Classes 3AC Description
	Slide 28: 3AC: Instruction Classes 3AC Description
	Slide 29: 3AC: Instruction Classes 3AC Description
	Slide 30: That’s All we Need! 3AC Description
	Slide 31: Dealing with Scope 3AC Description
	Slide 32: 3AC Data Structures AST Translation to 3AC – Implementation
	Slide 33: Translation Implementation AST Translation to 3AC – Implementation
	Slide 34: Next Time 3AC Translation

