
Checkin 17

Assume a program snippet has generated the following AST. Annotate each node with the 
type it corresponds to (or error if it is an error type). If a type analysis would issue a report, 
indicate that as well. 

1

[ ]

VarDecl AssignStmt

IntType ID LessThan

Times

IntLit

ID

ID

ID

name: b
symbol: *1

name: b
symbol: *1

name: b
symbol: *1

name: b
symbol: *1

value: 4

1

2

3 4

5

6 7

8 9

10 11

1

2

3

4

5

6

7

8

9

10

11



Checkin 17 Solution

2



Administrivia
Housekeeping

3



Error Reporting

University of Kansas | Drew Davidson

4



Last Time
Lecture Review – Type Analysis

Types

• What they are

• Why we have them

Type Rules

• Examples

Connecting operations to their types

• Enrich our static analysis pass

5

Semantics

You Should Know

• The meaning of different 
aspects of type systems

• The simple AST-based type 
analysis

• How to propagate type errors



Handling Errors
Type Analysis – Implementing Type Checking

• We’d like all distinct errors at 
the same time
• Don’t give up at the first error

• Don’t report the same error 
multiple times

• When you get error as an 
operand
• Don’t (re)report an error

• Again, pass error up the tree

6



Type Error Example
Type Analysis – Implementing Type Checkingint a;

bool b;

a = true + 1 + 2 + b;

b = 2;

7
BoolLit

true
IntLit

1

Plus IntLit
2

Plus

Plus

IdNode

type: bool
name: b

AssignExp

IdNode

type: int
name: a

AssignStmt AssignStmt

AssignExp

IdNode IntLit

StmtList

bool int

error int

REPORT

error bool

errorint

error

bool int

errorREPORT

REPORT



Today’s Outline
Lecture Overview – Error Reporting

Error Checking

• What counts as a bad program?

• How do we detect bad programs?

Limits of Analysis

• The halting problem

8

Semantics



Error Checking 
Semantic Analysis

Goal: save programmers from 
themselves

• It’s not enough to compile 
the programmer’s code

• Need to figure out what 
programmer meant to code

9



Quick Audience Poll
Semantics – Error Checking

Does this C program compile?

10

int a = 0;

int main(){

   if (0 == 1){

      b = 6;

   }

   return a;

}

Should this C code compile?



A Compiler’s Error-Checking Obligation
Semantics – Error Checking

11

Understandability / Consistency



Compiler As Mind Reader
Semantic Analysis – Broad View

12

A machine that infers your intent



Compiler as Complainer
Semantic Analysis – Broad View

13

A grumpy old man that yells at you for breaking the rules



The Compiler Before the Compiler
Semantic Analysis – Broad View

14

Semantic gap: difference between the description of 
the same object in two different representation



Bug Hunting
Semantic Analysis – Broad View

How do we prevent 
nonsense code from 
executing?

• We’ll consider two ways 
of analysis:
• Static

• Dynamic

15

Putting guardrails on computation



Compiler Perspective
Semantic Analysis – Broad View

Static

• Code analysis without 
execution

Dynamic

• Code analysis through 
execution

16

Checks done at compile time

Checks done at run time

Analysis part of the compiler 

itself

Analysis embedded into the 

program



Compiler Focus: Static Analysis
Semantic Analysis – Broad View

Doesn’t slow the program down
• Ok to take longer

• Ok to apply more heavyweight analysis

Has a “holistic” view of the program
• Has access to source code

• Knowledge of non-executed program paths

17



Limits of Error Checking
Static Analysis

We’d LOVE to ensure bug-
free programs

• Observe and report bugs 
before they are 
encountered

Usually we can’t do this
• Limits of static analysis

18



Limits of Static Analysis
Static Analysis

Theoretical argument

19

Practical argument



The Halting Problem
Static Analysis

Does a computation ever 
terminate?

20

Given a description of a Turing machine 

and its initial input, determine whether the 

program, when executed on this input, ever 

halts (completes). The alternative is that it 

runs forever without halting



Sketching the Halting Problem
Static Analysis

Effective procedure

• a procedure that is 
always yields a correct 
result on any input

21

Effective method for the 
halting problem would say:
Return “true” if the program 
halts on the given input
Return “false” if the program 
never halts on the given input

White Magic

Any 
program

True:
Program halts

False:
Program spins



No Effective Method for Halting
Static Analysis

22

assume white_magic(Function p) 
returns true if p halts, false if p does not

void black_magic(){

    if white_magic(black_magic){

        while true { }

    }

}
White Magic

True:
Program halts

False:
Program spins

Black Magic

White Magic

Blackmagic halts Blackmagic spins

spin return

Black Magic



What does this have to do 
with, say, a null pointer 
analysis?

• No halting solution 
means no reachability 
solution

23

Implications of the Halting Problem
Static Analysis

int * a = nullptr;

int main(){

   if (a != nullptr){

      *a = 1;

   }

   return a;

}



Rice’s Theorem
Static Analysis

“All non-trivial semantic properties of programs are undecidable”

24



Rice’s Theorem – Basic Idea
Static Analysis – Limits of  Error Checking

What does this have to do 
with, say, a null pointer 
analysis?

• No halting means no 
reachability

25

int main(){

  if (black_magic()){

     int * p = 0;

     *p = 42;

  } else {

     return 0;

  }

}



Rice’s Theorem - Implications
Static Analysis – Limits of  Error Checking

• We’d like to perfectly capture all bugs
• We can’t be right all of the time 

• We can choose HOW we are wrong

26



Limits of Static Analysis
Static Analysis

Theoretical argument

27

Practical argument

What if we only consider the universe of programs not written by *$%!-heads?



Practical Argument
Static Analysis

28

It’s really hard!



Let’s do some Sciency-Sounding Stuff
Static Analysis - Evaluation

29



Evaluating a Bug Detector
Static Analysis - Evaluation

30

Positive

Negative

True False

Has report

Has bug

No report

No bug

No bug
Has report

No report
Has bug

report
bug

No bug
report

Analysis is correct Analysis is wrong

Correct

Correct

Type I 
Error

Type II 
Error



Guarantees Under Imperfect Detection
Static Analysis – Limits of  Error Checking

Consistency / Reliability super 
important for users

We’d like to limit the kinds of 
errors we report

We can choose which type of bug 
report error to avoid

• Soundness: No false positives

• Completeness: No false negatives

31



Visual Analogy
Static Analysis – Limits of  Error Checking

Imagine the universe of all 
programs is contained in a circle

• You can draw a circle around the 
programs you report as buggy

• The actual buggy programs 
occupy a jagged region

32

All Programs

Buggy programs

Reported
bugs



Soundness and Completeness
Static Analysis – Limits of  Error Checking

33

All Programs All Programs

Complete bug detection

Reported
bugs

All buggy programs get flagged 
(No false negative problem)

Some correct programs get flagged 
(has false positive problem)

False
Positive

Buggy programs Buggy programs

Reported
bugs

Sound bug detection

Some buggy programs pass through
(has false negative problem)

All correct programs pass through
(No false positive problem)

False
Negative



Partial Correctness
Static Analysis – Limits of  Error Checking

• Make best-effort procedures that are neither sound nor complete

• We can analyze the result of a statement under certain assumptions
• Assume that the statement is executed

• Assume that the statement actually completes

34


	Slide 1: Checkin 17
	Slide 2: Checkin 17 Solution
	Slide 3: Administrivia Housekeeping
	Slide 4: Error Reporting
	Slide 5: Last Time Lecture Review – Type Analysis
	Slide 6: Handling Errors Type Analysis – Implementing Type Checking
	Slide 7: Type Error Example Type Analysis – Implementing Type Checking
	Slide 8: Today’s Outline Lecture Overview – Error Reporting
	Slide 9: Error Checking  Semantic Analysis
	Slide 10: Quick Audience Poll Semantics – Error Checking
	Slide 11: A Compiler’s Error-Checking Obligation Semantics – Error Checking
	Slide 12: Compiler As Mind Reader Semantic Analysis – Broad View
	Slide 13: Compiler as Complainer Semantic Analysis – Broad View
	Slide 14: The Compiler Before the Compiler Semantic Analysis – Broad View
	Slide 15: Bug Hunting Semantic Analysis – Broad View
	Slide 16: Compiler Perspective Semantic Analysis – Broad View
	Slide 17: Compiler Focus: Static Analysis Semantic Analysis – Broad View
	Slide 18: Limits of Error Checking Static Analysis
	Slide 19: Limits of Static Analysis Static Analysis
	Slide 20: The Halting Problem Static Analysis
	Slide 21: Sketching the Halting Problem Static Analysis
	Slide 22: No Effective Method for Halting Static Analysis
	Slide 23
	Slide 24: Rice’s Theorem Static Analysis
	Slide 25: Rice’s Theorem – Basic Idea Static Analysis – Limits of Error Checking
	Slide 26: Rice’s Theorem - Implications Static Analysis – Limits of Error Checking
	Slide 27: Limits of Static Analysis Static Analysis
	Slide 28: Practical Argument Static Analysis
	Slide 29: Let’s do some Sciency-Sounding Stuff Static Analysis - Evaluation
	Slide 30: Evaluating a Bug Detector Static Analysis - Evaluation
	Slide 31: Guarantees Under Imperfect Detection Static Analysis – Limits of Error Checking
	Slide 32: Visual Analogy Static Analysis – Limits of Error Checking
	Slide 33: Soundness and Completeness Static Analysis – Limits of Error Checking
	Slide 34: Partial Correctness Static Analysis – Limits of Error Checking

