
Check-In 16
Review: Type Systems

Give an example of a C program that uses type coercion

1

Check-In 16: Solution
Review: Type Systems

2

Administrivia
Housekeeping

3

• P3 deadline tonight

• P4 released “Monday morning”, i.e. Sunday @ 11:59 PM + 1 minute

Type Analysis

University of Kansas| Drew Davidson

4

Semantics

Last Lecture
Review: Type Systems

Discuss Type Systems

• What they are

• Why we use them

Type Specification (optional)

• How we communicate type systems

5

You Should Know

• What a type system is
• How type systems

effect semantics

Today’s Outline
Type Analysis

Enforcing Type Systems

• Design points

Type Analysis

• Type checking

• Type inference / synthesis

6

Semantics

Enforcing Type Systems
Type Analysis

Language property: how much
enforcement / checking to do?

• Idea 1: check what you can, allow
uncertainty

• Idea 2: check what you can, disallow
uncertainty completely

• Idea 3: check what you can, force
user to dispel uncertainty

7

e.g. C

e.g. Haskell

e.g. Java, Rust

Escaping the Type System
Enforcing Types

Some languages allow an explicit
means to “escape” the type system

• Typecasting – allow one type to be used as
another type

8

Casting Within Hierarchy
Enforcing Types

Cross-casting (static check in Java)

 Apple a = new Apple();

 Orange o = (Orange)a;

Downcasting (dynamic check in Java)

 Fruit f = new Apple();

 if (rand()) {

 f = new Orange();

 }

 Apple dApp = (Apple)f;

9

Fruit

Apple Orange

Class Hierarchy

Compiler check

Runtime check

Casting Within Hierarchy
Enforcing Types

Cross-casting (static check in Java)

 Apple a = new Apple();

 Orange o = (Orange)a;

Downcasting (dynamic check in Java)

 Fruit f = new Apple();

 if (rand()) {

 f = new Orange();

 }

 Apple dApp = (Apple)f;

10

Fruit

Apple Orange

Class Hierarchy

Runtime check

Compiler check

Strongly-Typed vs Weakly-Typed
Enforcing Types

11

Colloquial classification of
a language’s type system

• Degree to which type errors
are allowed to happen at
runtime

• Continuum without precise
definitions

Type Safety
Enforcing Types

12

• Has a precise definition
– All successful operations must be

allowed by the type system

• Java was explicitly designed to
be type safe
– A variable of some type can only

be used as that type without
causing an error

• C is very much not type safe

• C++ isn’t either but it is safer

Type Safety Violations
Type Enforcement

C

Format specifier
printf(“%s”, 1);

Memory safety
struct big{

 int a[1000000];

};

struct big * b = malloc(1);

C++
Unchecked casts

class T1 { char a };

class T2 { int b };

int main {

 T1 * myT1 = new T1();

 T2 * myT2 = new T2();

 myT1 = (T1*)myT2;

}

13

Type Research
Detour: Ungraded Material

14

Research on Types
Type Checking

A huge topic in and of itself

• Some CS Deparments have a “PLT”
focus: “Programming Languages and
Types”

15

Refinement Types
Type Checking

• A type enhanced with a predicate which must hold for
any element of that type

• Could imagine enhancing a type system with
annotations for all kinds of properties
• Single-use variable

• High security/low security (non-interference)

16

𝑓 ∶ ℕ → 𝑛 ∶ ℕ| 𝑛%2 = 0

• A huge topic in and of
itself
• Some CS Departments

have a “PLT” focus:
“Programming
Languages and Types”

17

??

?

?

More Research on Types
Type Checking

Piggybacking on Type Checking
Type Checking

• Type checking is a good
place to get extra
programmer hints:

- Programmers are already
familiar with typing logic

- The analysis is already
well-formulated

18

Formal Type Systems
End Detour: Done with Ungraded Material

19

Reasons for Typing
Type Checking

Generate appropriate code for operations

A + B
• String concatenation? Integer addition? Floating-point

addition

Catch runtime errors / security
• Make sure operations are sensible

• Augment type system with addition checks

20

Types In Action
Type Checking

Type Analysis

• Assigning types to expressions

• Flavors:
• Type synthesis – get type of an AST

node from it’s children

• Type inference – get type of an AST
node from it’s use context

Type Checking

• Ensure that type of a construct is
allowed by the type system

21

Implementing Our Type Checker
Type Checking

22

Implementing Typing
Our Type System

Structurally similar to nameAnalysis

• Historically, intermingled with nameAnalysis

• Done as part of AST attribute “decoration”

Add a typeCheck method to AST nodes

• Recursively walk the AST checking subtypes
• “Inside out” analysis

• Attach types to nodes

• Propagate an error symbol

23

Binary Operators
Implementing Static Typing

• Get the type of the LHS

• Get the type of the RHS

• Check that the types are
compatible for the
operator

• Set the kind of the node
be a value

• Set the type of the node
to be the type of the
operation’s result

24

PlusNode

(int)

lhs rhs

(int)

(int)

Literals
Implementing Static Typing

• Cannot be wrong
• Just pass the type of the

literal up the tree

25

IntLitNode

(int)

Variables
Implementing Static Typing

• Look up the type of the
declaration
• There should be a

symbol “linked” to the
node

• Pass symbol type up the
tree

26

IdNode
mySymbol

(int)

Kind: VAR
type: int

Name: “v”

Function Calls
Implementing Type Checking

• Get type of each actual

• Match against formals of the
called function’s symbol

• Propagate return type to
parent node

27

FnCallNode

myID

(int)

mySymbol

Kind: Func
Type: int,int → bool
Name: “greaterThan”

ActualsList

(int)

[0] [1]

(bool)

… …

(int,int)

IDNode

args
(int,int →bool)

Statements
Implementing Type Checking

Always have void type

• Make sure to check child expression

• No type to propagate

• Some versions of analysis may propagate
boolean: error / no error

28

OutputStmt

PlusNode

IntLit IDNode
mySymbol

Kind: VAR
type: int

Name: “v”

(int) (int)

(int)

(void)

Other AST Node Types
Implementing Type Checking

Follow these same principles

• Ensure that children are well-typed

• Apply a combination rule
• If valid: infer a type and propagate out

• If invalid: propagate error

29

Exercise: Draw Type Analysis
Bonus Exercise

30

1. int a;

 2. bool f;

 3. int m(int arg){

 4. int b;

 5. return arg + 1;

 6. }

Handling Errors
Implementing Type Checking

• We’d like all distinct errors at
the same time
• Don’t give up at the first error

• Don’t report the same error
multiple times

• When you get error as an
operand
• Don’t (re)report an error

• Again, pass error up the tree

31

Operator Errors vs Operand Errors
Implementing Type Checking

The difference between…

 true + false

… and

 true == 7

32

Neither operand works with the operator

These operands could work with the operator
… but they don’t work with each other

error error

error

Type Error Example
Implementing Type Checkingint a;

bool b;

a = true + 1 + 2 + b;

b = 2;

33
BoolLit

true
IntLit

1

Plus IntLit
2

Plus

Plus

IdNode

type: bool
name: b

AssignExp

IdNode

type: int
name: a

AssignStmt AssignStmt

AssignExp

IdNode IntLit

StmtList

bool int

error int

REPORT

error bool

errorint

error

bool int

errorREPORT

REPORT

Lecture Summary
Wrap-Up: Typechecking

• We’d like all distinct errors at the same time
• Don’t give up at the first error

• Don’t report the same error multiple times

• When you get error as an operand
• Don’t (re)report an error

• Again, pass error up the tree

34

Next Time
Preview: Error Reports

35

Having explorer two semantic analyses, let’s generalize

• What’s the limit of semantic analysis, especially error checking?

36

	Slide 1: Check-In 16 Review: Type Systems
	Slide 2: Check-In 16: Solution Review: Type Systems
	Slide 3: Administrivia Housekeeping
	Slide 4: Type Analysis
	Slide 5: Last Lecture Review: Type Systems
	Slide 6: Today’s Outline Type Analysis
	Slide 7: Enforcing Type Systems Type Analysis
	Slide 8: Escaping the Type System Enforcing Types
	Slide 9: Casting Within Hierarchy Enforcing Types
	Slide 10: Casting Within Hierarchy Enforcing Types
	Slide 11: Strongly-Typed vs Weakly-Typed Enforcing Types
	Slide 12: Type Safety Enforcing Types
	Slide 13: Type Safety Violations Type Enforcement
	Slide 14: Type Research Detour: Ungraded Material
	Slide 15: Research on Types Type Checking
	Slide 16: Refinement Types Type Checking
	Slide 17
	Slide 18: Piggybacking on Type Checking Type Checking
	Slide 19: Formal Type Systems End Detour: Done with Ungraded Material
	Slide 20: Reasons for Typing Type Checking
	Slide 21: Types In Action Type Checking
	Slide 22: Implementing Our Type Checker Type Checking
	Slide 23: Implementing Typing Our Type System
	Slide 24: Binary Operators Implementing Static Typing
	Slide 25: Literals Implementing Static Typing
	Slide 26: Variables Implementing Static Typing
	Slide 27: Function Calls Implementing Type Checking
	Slide 28: Statements Implementing Type Checking
	Slide 29: Other AST Node Types Implementing Type Checking
	Slide 30: Exercise: Draw Type Analysis Bonus Exercise
	Slide 31: Handling Errors Implementing Type Checking
	Slide 32: Operator Errors vs Operand Errors Implementing Type Checking
	Slide 33: Type Error Example Implementing Type Checking
	Slide 34: Lecture Summary Wrap-Up: Typechecking
	Slide 35: Next Time Preview: Error Reports
	Slide 36

