
Check-in
Review: Semantic Analysis

1

1. int a;

 2. bool f;

 3. int m(int arg){

 4. int b;

 5. return arg + 1;

 6. }

 7.

 8. int g(){

 9. int c;

10. int d;

11. if (a){

12. int d;

13. int f;

14. int g;

15. }

16. }

Show the symbol table
After line 12 but before line 13

Type systems

University of Kansas | Drew Davidson

2

Last Time
Semantic Analysis

Name Analysis

• Enforcing scope

Symbol Table

• What it is

• What it does

4

Name analysis
• What it is
• What it does
• How it works

You should know

Semantics

Lecture Outline
Type Systems

Semantics

Discuss Type Systems

• What they are

• Why we use them

Type Specification

• Formally communicating type systems

Our type system (for the project)

5

Specification vs Implementation
Discussing Type Systems

6

A big idea in compilers

• Thinking at different layers of
abstraction

• Types are a nice instance
(so were syntax and tokenization)

• Today: Specification

• Next time: Implementation

Deduce what the
programmer meant

• Philosophy: don’t let
bugs get by

• Give programmer means
to express intent

7

Recall: Aim of Semantic Analysis
Type Systems – Rationale

Types Communicate
programmer intention

• Compiler can choose the
appropriate operation

• Compiler can tell if the
operations are sensible

8

Types as Hints From Programmer
Type Systems – Rationale

9

What we Mean by “Type”
Type Systems

Short for “data type”

• Classification for various
kinds of data

• A set of possible values
which a variable can
possess

May imply representation

(perhaps in memory)

• int32

10

Type System: lists types
and describes how they
may be used

• What operations that
can be done on
member values

• How type system may
be extended

Type Systems: The Context for Types
Type Systems

• Base types and means of
building aggregate types
• int, bool, void, class, function,

struct, pointer, reference

• A means of determining if
types are compatible
• Can disparate types be

combined? How?

• Rules for inferring the type
of an expression

11

Components of a Type System
Type Systems

• For every operator (including assignment)…
- What types can the operand have?

- What type is the result?

• Example:

 double a;

 int b;

 a = b;

 b = a;

12

Legal in Java, C++

Legal in C++, Illegal in Java

Type Rules
Type Systems

Defn: Using One Type as a
Different Type

• May require explicit
acknowledgement by user
(e.g. casting)

13

Type Conversion
Type Systems

Defn: Implicit cast from one
data type to another

• For example:

 int to unsigned int

14

Type Coercion
Type Systems

A narrow form of coercion

• When destination type
can represent the source
type without loss of
precision

• float to double (ok)

• double to float (not ok)

15

Type Promotion
Type Systems

A promotion ceremony

16

Subtyping
Type Systems

When a more narrow type can be used in place of a
another

• Explicit inheritance / class hierarchy

class Lunch

class Soup:
public Lunch

class Sandwich:
public Lunch

class Hotdog:
public Sandwich

Defn: Type is defined by the methods and properties

17

“If it walks like a duck and talks like a duck, it’s a duck”

Duck Typing
Type Systems

18

Duck Typing: Example
Type Systems

Defn: Type defined by the methods/properties at time
of use

19

“If it walks like a duck but isn’t giving you the noise you want,
 punch it until it quacks. Now it’s a duck”

Duck Punching
Type Systems

Also sometimes called gorilla typing

20

Brief Aside: Duck Punching
Type Systems

guerilla (as in covert/secret) gorilla (sounds like guerilla)

21

class Duck:

 def quack(): print(“quack”)

class MechaBird:

 def squak(): print(“101001…”)

def processDuck(Duck d) { … }

MechaBird m = new MechaBird();

m.quack = m.squak;

processDuck(m);

Duck Punching: Example
Type Systems

22

Let’s Talk about The Type System
Used in the Projects

Type Checking

23

• Primitive Types

– int, bool, string, void

• Aggregate types

– ref, functions, custom

• Coercion

– Bool cannot be used as an int (nor vice-versa)

Our Type System: Fundamentals
Type Checking

24

• Arithmetic operators must have int

• Equality operators == and !=

– Operands must have same type

• CANNOT be applied to functions

• CAN be applied to function results

• Other relational operators must have int type

• Logical operators must have bool operands

Our Type Rules
Our Type System

25

• Assignment operator
– Must have operands of the same type
– Can’t be applied to functions

• Functions (but CAN be applied to function results)

• For sending data to the console
– x must be an rval (usable on RHS of an assignment)

• For reading data from the console
– x must be an lval (usable on LHS of an assignment)

• Condition of if and condition of while must be
boolean

Type Errors II
Our Type System

26

• Invoking (calling) something that’s not a
function

• Invoking a function with
– Wrong number of args

– Wrong type of args

• Returning a value from a void function

• Not returning a value in a non-void function

• Returning a wrong type of value in a non-void
function

Type Errors III
Our Type System

27

• Invoking (calling) something that’s not a
function

• Invoking a function with
– Wrong number of args

– Wrong type of args

• Returning a value from a void function

• Not returning a value in a non-void function

• Returning a wrong type of value in a non-void
function

Summary
Type Systems

28

Implement name analysis

Upcoming Project: P4
Type Systems

29

Let’s stop here

Formalizing Type Systems
Detour: Ungraded Material

30

Representing Type Systems
Formal Type Systems

Particular formalism: Judgements + rules

Judgements:

Γ ⊢ 𝔍

Rules:

31

𝔍 is an assertion;
Free variables in 𝔍 are declared in Γ

Γ1 ⊢ 𝔍1 Γ𝑛 ⊢ 𝔍n…

Γ ⊢ 𝔍

(rule name)

(annotations)

Judgements
Formal Type Systems

32

𝔍 is an assertion;
Free variables in 𝔍 are declared in Γ

Example Judgements

Γ ⊢ 𝑀 ∶ 𝐴

∅ ⊢ 𝑡𝑟𝑢𝑒 ∶ 𝑏𝑜𝑜𝑙

∅, 𝑥: 𝑖𝑛𝑡 ⊢ 𝑥 + 1 ∶ 𝑖𝑛𝑡

Γ ⊢ 𝔍

Γ ⊢ ◊

Example type rules

Rules
Formal Type Systems

33

Γ1 ⊢ 𝔍1 Γ𝑛 ⊢ 𝔍n…

Γ ⊢ 𝔍

(rule name)

∅ ⊢ ◊

(Env ∅)

Γ ⊢ ◊

Γ ⊢ 1:int

(Val 1)

Γ ⊢ M : int

Γ ⊢ M+N:int

Γ ⊢ N : int

(Val +)

Proof Trees
Formal Type Systems

34

∅ ⊢ ◊ By (Env ∅)

∅ ⊢ 1:int By (Val 1)

∅ ⊢ ◊ By (Env ∅)

∅ ⊢ 1:int By (Val 1)

∅ ⊢ 1+1:int By (Val +)

Example type rules

∅ ⊢ ◊

(Env ∅)

Γ ⊢ ◊

Γ ⊢ 1:int

(Val 1)

Γ ⊢ M : int

Γ ⊢ M+N:int

Γ ⊢ N : int

(Val +)

Well-Typedness
Formal Type Systems

35

∅ ⊢ ◊ By (Env ∅)

∅ ⊢ 1:int By (Val 1)

∅ ⊢ ◊ By (Env ∅)

∅ ⊢ 1:int By (Val 1)

∅ ⊢ 1+1:int By (Val +)

Hypothetical proof tree

Basic Scheme

• State rules for
language
constructs

• Well-typed if it
can be placed at
root of a
complete proof
tree

A way to express that the program can be correctly typed

Example Type Rules
Formal Type Systems

36

Γ ⊢ E0[E1] : T

Γ ⊢ E0 : T[]
(val arr-elt)

Γ ⊢ E1 : int

Γ ⊢ E.length : int

Γ ⊢ E : T[]
(val arr-len)

Γ ⊢ new T[E] : T[]

Γ ⊢ E : int
(val arr-alloc)

Example Type Rules
Formal Type Systems

37

Γ ⊢ S : void
Γ ⊢ E : T Where statement S

contains only expression E

(val stmt)

Example Type Rules
Formal Type Systems

38

Γ ⊢ 𝑆1: T1 Γ ⊢ (𝑆2; … ; 𝑆n): 𝑇n

Γ ⊢ (𝑆1; 𝑆2; … ; 𝑆n)∶ 𝑇n

(val sequence)

Example Type Rules
Formal Type Systems

39

(val declaration)

Γ ⊢ E : T

Γ ⊢ (id : T = E ; S2 ; … ; Sn): T′

Γ, id: T ⊢ (S2 ; … ; Sn) : T′

Example Type Rules
Formal Type Systems

40

Γ ⊢ E(E1 , … , En) : Tr

Γ ⊢ 𝐸1: 𝑇1 × ⋯ × En: Tn → 𝑇𝑟 Γ ⊢ 𝐸𝑖: 𝑇𝑖 (𝑖 ∈ 1. . 𝑛)

(val fn-call)

Formal Type Systems
End Detour: Done with Ungraded Material

41

	Slide 1: Check-in Review: Semantic Analysis
	Slide 2: Type systems
	Slide 4: Last Time Semantic Analysis
	Slide 5: Lecture Outline Type Systems
	Slide 6: Specification vs Implementation Discussing Type Systems
	Slide 7: Recall: Aim of Semantic Analysis Type Systems – Rationale
	Slide 8: Types as Hints From Programmer Type Systems – Rationale
	Slide 9: What we Mean by “ Type” Type Systems
	Slide 10: Type Systems: The Context for Types Type Systems
	Slide 11: Components of a Type System Type Systems
	Slide 12: Type Rules Type Systems
	Slide 13: Type Conversion Type Systems
	Slide 14: Type Coercion Type Systems
	Slide 15: Type Promotion Type Systems
	Slide 16: Subtyping Type Systems
	Slide 17: Duck Typing Type Systems
	Slide 18: Duck Typing: Example Type Systems
	Slide 19: Duck Punching Type Systems
	Slide 20: Brief Aside: Duck Punching Type Systems
	Slide 21: Duck Punching: Example Type Systems
	Slide 22: Let’s Talk about The Type System Used in the Projects Type Checking
	Slide 23: Our Type System: Fundamentals Type Checking
	Slide 24: Our Type Rules Our Type System
	Slide 25: Type Errors II Our Type System
	Slide 26: Type Errors III Our Type System
	Slide 27: Summary Type Systems
	Slide 28: Upcoming Project: P4 Type Systems
	Slide 29
	Slide 30: Formalizing Type Systems Detour: Ungraded Material
	Slide 31: Representing Type Systems Formal Type Systems
	Slide 32: Judgements Formal Type Systems
	Slide 33: Rules Formal Type Systems
	Slide 34: Proof Trees Formal Type Systems
	Slide 35: Well-Typedness Formal Type Systems
	Slide 36: Example Type Rules Formal Type Systems
	Slide 37: Example Type Rules Formal Type Systems
	Slide 38: Example Type Rules Formal Type Systems
	Slide 39: Example Type Rules Formal Type Systems
	Slide 40: Example Type Rules Formal Type Systems
	Slide 41: Formal Type Systems End Detour: Done with Ungraded Material

