
Explain why an LL(1) parser has trouble with immediate left recursion
but an SLR does not

1

Check-in
SR Parsing

Scope

University of Kansas | Drew Davidson

2

LR Parser Construction

• LR Parsers

• Building SLR Parser tables

3

Last Time
Lecture Review - LR Parsing

Parsing

You Should Know

• How to build an SLR Parser
• Item Closure Set
• Item Set GoTo

• Creating an SLR Parser Table
• Action Table
• Goto Table
• Accept / Reject

4

Building FSM
LR Parser Construction

P → (● L)
 L → ● id
 L → ● L id

L → id ●

P → (L ●)
L → L ● id

L → L Id ●

P

(

id

L

P → (L) ●

)

id

S’ → P ●S’ → ● P
 P → ● (L)

I0 I1

I2

I4
I6

I3

I5

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

5

Convert FSM to Table
LR Parser Construction

() id eof

I0

I1

I2

I3

I4

I5

I6

S I2

S I 4

S I5
S I6

Action Table

P → (● L)
 L → ● id
 L → ● L id

L → id ●

P → (L ●)
L → L ● id

L → L Id ●

P

(

id

L

P → (L) ●

)

id

S’ → P ●S’ → ● P
 P → ● (L)

I0 I1

I2

I4
I6

I3

I5

GoTo Table

P L

I1

I3

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

R❸ R❸

R❷

R❹ R❹

☺

Outline
Today’s Lecture - Scope

Finish up Parsers

• Running the SLR Parser

• LL(1) and SLR Language limits

Semantics

• Program meaning

Scope

• Name analysis

6

Parsing

7

Running the SLR Parser
LR Parser Construction

() id eof

I0

I1

I2

I3

I4

I5

I6

S I2

S I 4

S I5
S I6

Action Table GoTo Table
P L

I1

I3

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

R❸ R❸

R❷

R❹ R❹

☺

Input String
(id) eof

I0 (
Item
Stack

Next
Token

T1 I0 id
Item
Stack

Next
Token

T2

I2

I0)
Item
Stack

Next
Token

T3

I2

I4

I0)
Item
Stack

Next
Token

T3

I2

R❸ to L

I0)
Item
Stack

Next
Token

T3

I2

I3

8

Running the SLR Parser
LR Parser Construction

() id eof

I0

I1

I2

I3

I4

I5

I6

S I2

S I 4

S I5
S I6

Action Table GoTo Table
P L

I1

I3

R❸ R❸

R❷

R❹ R❹

☺

I0 eof
Item
Stack

Next
Token

T4

I2

I3

I5

I0 eof
Item
Stack

Next
Token

T4 I0 eof
Item
Stack

Next
Token

T4

I1

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

Input String
(id) eof

I0)
Item
Stack

Next
Token

T3

I2

I3

Outline
Today’s Lecture - Scope

Finish up Parsers

• Running the SLR Parser

• LL(1) and SLR Language limits

Semantics

• Program meaning

Scope

• Name analysis

10

Parsing

When Does the Parser Fail?
LL(1) and SLR Language Limits

For both the LL and LR parsers, two types of failure:

• Running the parser fails: The input isn’t in the language

• Building the parser fails: The language is too expressive

11

When Running The Parser Fails
LL(1) and SLR Language Limits

The input string is rejected

• Happens whenever either parser table indexes an
empty cell

• Happens whenever either parser gets to the end of
input without the accept condition

This is the parser working as intended

• Just means the user is at fault with bad input

12

When Does the Parser Fail?
LL(1) and SLR Language Limits

How building the parser fails

• Happens whenever two entries are in a cell

• For LR parsers, multiple types of collision:
• Shift/Reduce: a reduce and a shift action in the same cell

• Reduce/Reduce: reduce by two different productions

This is a problem!

• Means the language isn’t captured by the formalize
(e.g. it’s not LL(1), not SLR, whatever)

13

Bottom-Up SDT
LL(1) and SLR Language Limits

Fairly intuitive

• Add a translation type to each item

• Like LL(1) parser, items are popped right-to left

Terminals translations

• Read lexeme value during a shift

Nonterminal translations

• Read translations of popped RHS symbols

14

Bottom-Up SDT
LL(1) and SLR Language Limits

15

X

W ::= X + Z { $$ = AddNode($1 + $3); }

+

Z

Item Stack

(X.trans)
IDNode

Semantic Stack

(Y.trans)
N/A

(Z.trans)
IDNode

W

Item Stack Semantic Stack

(Z.trans)
IDNode

Reduce by
❹

❹

That’s all for parsers!
Frontend Finished

ABET Course Outcomes

1. Understanding the role and structure
of compilers, and its various phases

2. Constructing an unambiguous
grammar for a programming
language

3. Generating a lexer and parser using
automatic tools

4. Constructing machines to recognize
regular expressions (NFA, DFA) and
grammars (LL and LR parsers)

5. Generating intermediate form from
source code

6. Type checking and static analysis

7. Assembly/binary code generation

16

Scanner
Lexical analysis

Parser
Syntactic analysis

Semantic analysis

Intermediate code
generation

IR optimization

Final Code
generation

Final code
optimization

Output code in T

Source code
(sequence of chars)

Frontend

17

COMPILER

Lexical
Analysis

SDD

Syntactic
Definiton

Parsing

Semantics

Execution

Intermediate
Representation

Code
Generation

Optimization

Runtime
Environment

Semantics

Outline
Today’s Lecture - Scope

Finish up Parsers

• Running the SLR Parser

• LL(1) and SLR Language limits

Semantics

• Program meaning

Scope

• Name analysis

18

Parsing

Compilers: A Delicious Medley of CS
Today’s Lecture - Scope

Learning compilers is kinda
like a tasting menu of other
CS domains

• Front end – Automata
theory / discrete structures

• Middle end – Software
Engineering / PL

• Back end – Architecture /
Assembly code

19

frontend

middle end

backend

Language Design
Today’s Lecture - Scope

Things are about to
get a lot more code-y

• Maybe also a bit
more cerebral

• Making a compiler
empowers you to
make a language!
• How should a

language be built?

20

Syntax vs Semantics
Semantic Analysis

Program Syntax

• Does the program have a valid structure?

Program Semantics

• Does the program have a valid meaning?

21

Goals
Semantic Analysis

Error Checking

• Is the program’s meaning
sensible?

Program “Understanding”

• To what does an identifier
refer?

• To what operator does a
program refer?

22

a + b

Example Program Snippet

Is this addition?
String concatenation?
User-defined operation?

Respecting Program Semantics
Semantic Analysis

Compiler must facilitate
language semantics

• Prerequisite: Infer the
intended program
behavior w.r.t. semantics

• Approach: Take multiple
passes over the
completed AST

23

One example: scope

Scope
Semantic Analysis

• A central issue in name analysis
is to determine the lifetime of a
variable, function, etc.

• Scope definition: the block of
code in which a name is
visible/valid

24

Scope: A Language Feature
Semantic Analysis

• Some languages have NO
notion of scope
• Assembly / FORTRAN

• Most familiar: static / most
deeply nested
• C / C++ / Java

There are several decisions to
make, we’ll overview a couple

of them

25

Kinds of Scope
Scope Decisions

26

• Static Scope
– Most deeply nested

w.r.t. syntactic block
(determined at
compile time)

• Dynamic Scope
– Most deeply nested

w.r.t. calling context
(determined at
runtime)

Forward Reference
Scope Decisions

• Do we allow use before name is (lexically) defined?

• Requires 2 passes over the program
• 1 to fill symbol table

• 1 pass to use symbols

27

void country() {

 western();

}

void western() {

 country();

}

Variable Shadowing
Scope Decisions

• Do we allow names to
be re-used?

• What about when the
kinds are different?

28

void smoothJazz(int a){

 int a;

 if (a){

 int a;

 if (a){

 int a;

 }

 }

}

void hardRock(int a){

 int hardRock;

}

Scope Kind & Shadowing
Scope Decisions

29

int a = 1;

int hop(){

 return a;

}

int hip(){

 int a = 2;

 return hop();

}

int hippo(){

 return hip();

}

Overloading
Scope Decisions

• Do we allow same names, same scope, different
types?

30

int techno(int a){ … }

bool techno(int a){ … }

bool techno(bool a){ … }

bool techno(bool a, bool b){ }

Our Scope Decisions
Scope Decisions

• What scoping rules
will we employ?

• What info does the
compiler need?

31

Our Language: Scope Scheme
Scope Decisions

Static scoping scheme
• Programs use their lexical nesting to

determine their scope

32

Our Language: Shadowing
Scope Decisions

Shadowing

C-like rules:

• Shadowing between scopes is allowed

• Shadowing within a scope is disallowed

33

Our Language: Others
Scope Decisions

Overloading

Nah

Forward Declaration

Nah

34

	Slide 1
	Slide 2: Scope
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Outline Today’s Lecture - Scope
	Slide 7
	Slide 8
	Slide 10: Outline Today’s Lecture - Scope
	Slide 11: When Does the Parser Fail? LL(1) and SLR Language Limits
	Slide 12: When Running The Parser Fails LL(1) and SLR Language Limits
	Slide 13: When Does the Parser Fail? LL(1) and SLR Language Limits
	Slide 14: Bottom-Up SDT LL(1) and SLR Language Limits
	Slide 15: Bottom-Up SDT LL(1) and SLR Language Limits
	Slide 16: That’s all for parsers! Frontend Finished
	Slide 17
	Slide 18: Outline Today’s Lecture - Scope
	Slide 19: Compilers: A Delicious Medley of CS Today’s Lecture - Scope
	Slide 20: Language Design Today’s Lecture - Scope
	Slide 21: Syntax vs Semantics Semantic Analysis
	Slide 22: Goals Semantic Analysis
	Slide 23: Respecting Program Semantics Semantic Analysis
	Slide 24: Scope Semantic Analysis
	Slide 25: Scope: A Language Feature Semantic Analysis
	Slide 26: Kinds of Scope Scope Decisions
	Slide 27: Forward Reference Scope Decisions
	Slide 28: Variable Shadowing Scope Decisions
	Slide 29: Scope Kind & Shadowing Scope Decisions
	Slide 30: Overloading Scope Decisions
	Slide 31: Our Scope Decisions Scope Decisions
	Slide 32: Our Language: Scope Scheme Scope Decisions
	Slide 33: Our Language: Shadowing Scope Decisions
	Slide 34: Our Language: Others Scope Decisions

