

Building LL(1) Parsers

- Transforming grammars:
 - Left factoring
 - Left-recursion elimination
- Building the selector table
 - FIRST Sets

You Should Know

- The intuition behind FIRST and FOLLOW
- The formal definition of FIRST sets

Parsing

Building LL(1) Parsers

- LL(1) Game Plan
- Finish up FIRST Sets
- FOLLOW Sets

Parsing

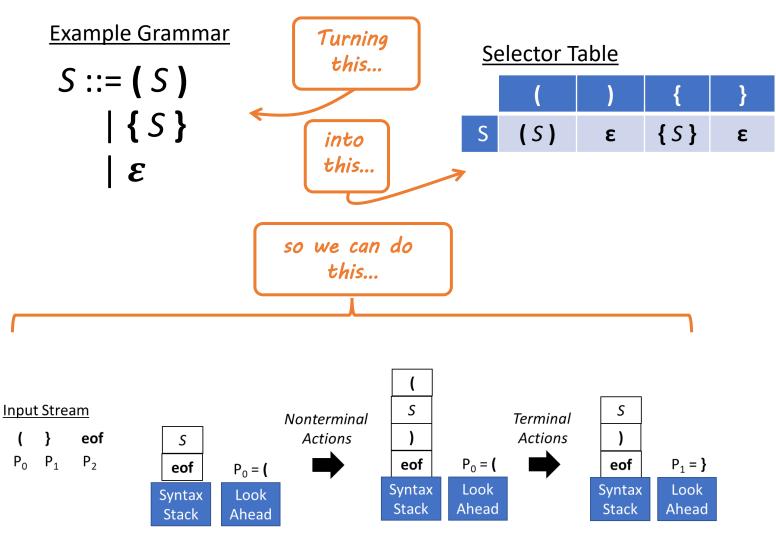
Perspective: Where we're At LL(1) Game Plan

Parsers are a bit tricky!

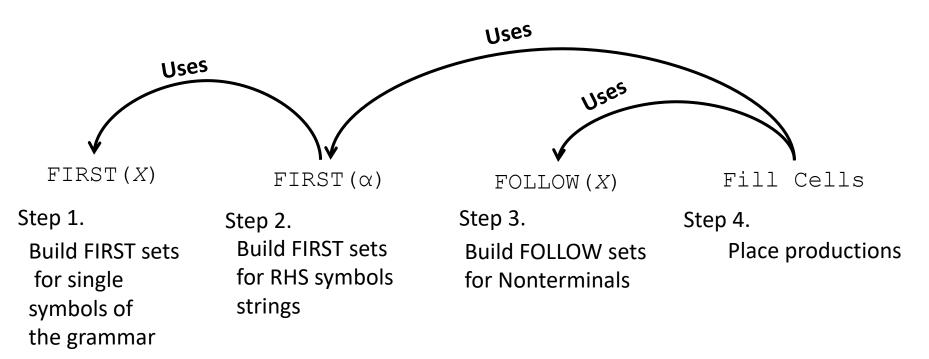
• Sadly, you need to know this to build a compiler frontend

The underlying concepts of FIRST and FOLLOW will be useful for LL(1) and other parsers

 (We'll talk about 1 other kind – the LR parsers, which is what BISON generates).



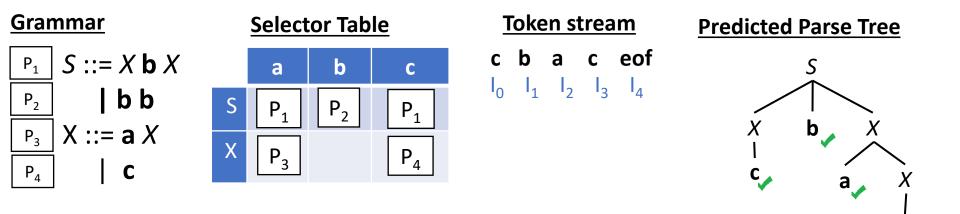
What We're Doing: The Big Picture Building the LL(1) Selector Table

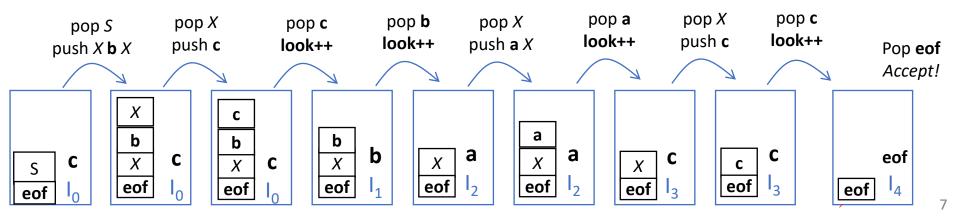


LL(1) Selector Table Algorithm Building LL(1) Selector Table

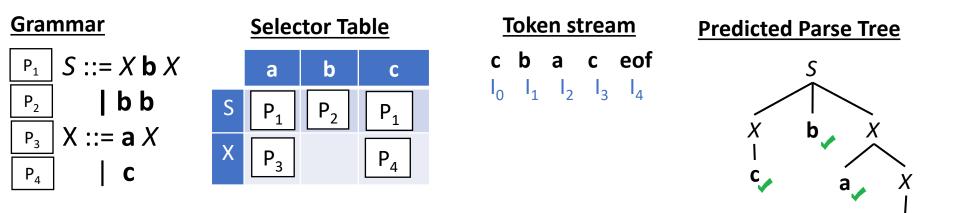
We rely on FIRST sets and FOLLOW sets for table construction But these sets will be useful even beyond the LL parsers

LL(1) Parsers Revisited: Big Picture





LL(1) Parsers Revisited: Big Picture



LL(1) Parser "Résumé"

- Goals: to expand the leftmost nonterminal
- Skills: always knows the first leaf of the leftmost nonterminal's subtree

LL(1) Parsers Revisited: Big Picture

LL(1) Parser "Résumé"

- Goals: to expand the leftmost nonterminal
- Skills: always knows the first leaf of the target nonterminal's subtree

In an LL(1) grammar this is a sufficient skillset!

- Can choose correct production when target's first leaf token is given (FIRST sets)
- Can choose correct production when there is no leaf token based on next subtree over (FOLLOW sets)

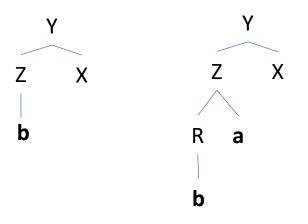
FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε , then ε is in FIRST(X).

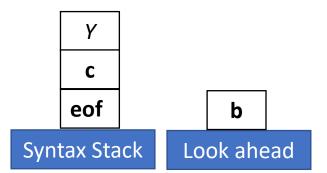
Example Grammar Fragment P₃

 $P_3 \quad Y ::= Z X$

Does P3 apply to this lookahead?

• Yes, if b is in FIRST(Z)





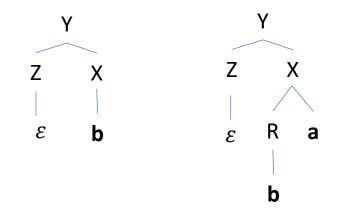
FIRST Set Intuition

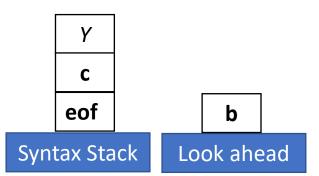
FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε , then ε is in FIRST(X).

Example Grammar Fragment P₃

 $\overrightarrow{\mathsf{P}_3} Y ::= Z X$

- Yes, if b is in FIRST(Z)
- Yes, if ε is in FIRST(Z) and b is in FIRST(X)





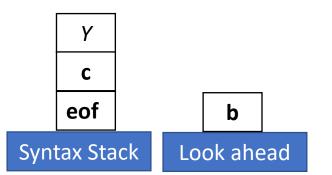
FIRST Set Intuition LL(1) The Big Picture

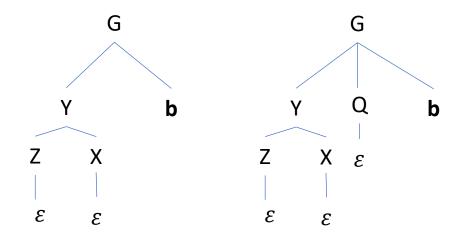
FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε , then ε is in FIRST(X).

Example Grammar Fragment P₃

 $\overline{\mathsf{P}_3} \quad Y ::= Z X$

- Yes, if b is in FIRST(Z)
- Yes, if ε is in FIRST(Z) and b is in FIRST(X)
- Yes, if ε is in FIRST(Z) and FIRST(X), and b can FOLLOW right after Y



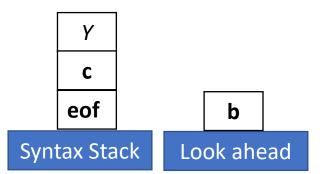


FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε , then ε is in FIRST(X).

Example Grammar Fragment

 P_3 Y ::= Z X

- Yes, if b is in FIRST(Z)
- Yes, if ε is in FIRST(Z) and b is in FIRST(X)
- Yes, if ε is in FIRST(Z) and FIRST(X), and b can FOLLOW right after Y



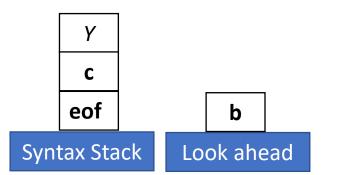
FIRST Set Intuition LL(1) The Big Picture

Example Grammar Fragment

$$\begin{array}{c|c} P_1 & X ::= \mathbf{a} Y \mathbf{c} \\ \hline P_2 & | \mathbf{c} \\ \hline P_3 & Y ::= Z X \\ \hline P_4 & Z ::= \mathbf{b} \\ \hline P_5 & | \mathbf{a} \end{array}$$

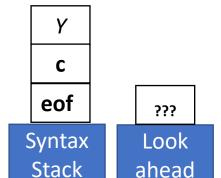
Does P3 apply to this lookahead?

- Yes, if b is in FIRST(Z)
- Yes, if ε is in FIRST(Z) and b is in FIRST(X)
- Yes, if ε is in FIRST(Z) and FIRST(X), and b can FOLLOW right after Y



At what lookahead tokens does P3 apply?

- Those in FIRST(Z)
- If ε is in FIRST(Z), those in FIRST(X)
- If ɛ is in FIRST(Z) and FIRST(X), those that follow Y



Building LL(1) Parsers

- LL(1) Game Plan
- Building a Grammar's FIRST sets
- FOLLOW Sets

Parsing

FIRST Sets: Review what we know Building a Grammar's FIRST Sets

Building FIRST for ε

FIRST(t) = { t }

 $\mathsf{FIRST}(\varepsilon) = \{ \varepsilon \}$

Building FIRST for a symbol string α

Let α be composed of symbols $\alpha_1\,\alpha_2\,...\,\alpha_n$

 C_1 : add FIRST(α_1) - ε

C₂: For all k < n: if $\alpha_1 \dots \alpha_{k-1}$ is nullable, add FIRST(α_k) - ε

 C_3 : If $\alpha_1 \dots \alpha_n$ is nullable, add ε

Building FIRST for a nonterminal X

For all productions with X on the LHS and $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ on the RHS

 C_1 : add FIRST(α_1) - ε

C₂: For all k < n: if $\alpha_1 \dots \alpha_{k-1}$ is nullable, add FIRST(α_k) - ε

 C_3 : If $\alpha_1 \dots \alpha_n$ is nullable, add ε

Building FIRST for a nonterminal X

For all productions with X on the LHS (i.e. X ::= α) Add FIRST(α) to FIRST X Same

FIRST Sets: Review what we know Building a Grammar's FIRST Sets

Building FIRST for ε

FIRST(t) = { t }

FIRST(ε) = { ε }

Building FIRST for a symbol string α

Let α be composed of symbols $\alpha_1\,\alpha_2\,...\,\alpha_n$

 C_1 : add FIRST(α_1) - ε

C₂: For all k < n: if $\alpha_1 \dots \alpha_{k-1}$ is nullable, add FIRST(α_k) - ε

 C_3 : If $\alpha_1 \dots \alpha_n$ is nullable, add ε

Mutually recursive (dependency loop)!

This means that there's one additional step we need...

Building FIRST for a nonterminal X

For all productions with X on the LHS (i.e. X ::= α) Add FIRST(α) to FIRST X

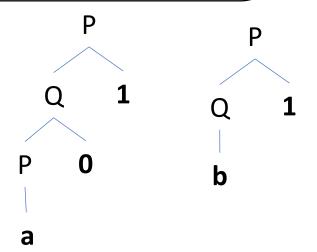
Building FIRST for all Grammar Symbols Building Grammar's FIRST Sets

For each nonterminal of the grammar

Loop over for all productions (of the form $X := \alpha$, wlog) Add FIRST(α) to FIRST(X)

(if a set hasn't been computed, use {}, the empty set)

until saturation (no set changes)



$FIRST(P) \subseteq FIRST(Q) \subseteq FIRST(P)$

Tricks for Computing FIRST Sets Building Parser Tables

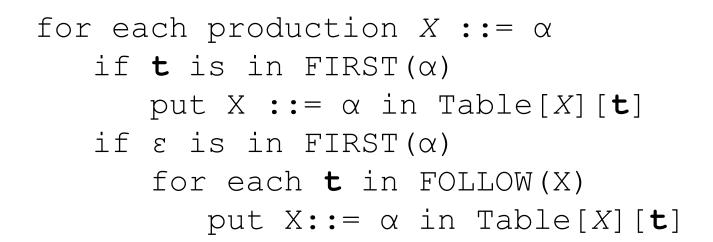
- Begin by computing the single-symbol FIRST sets for each production's LHS
- Run until saturation
- Can help to work bottom-up
- Compute symbol-string FIRST sets for each production's RHS
- Stay hydrated!

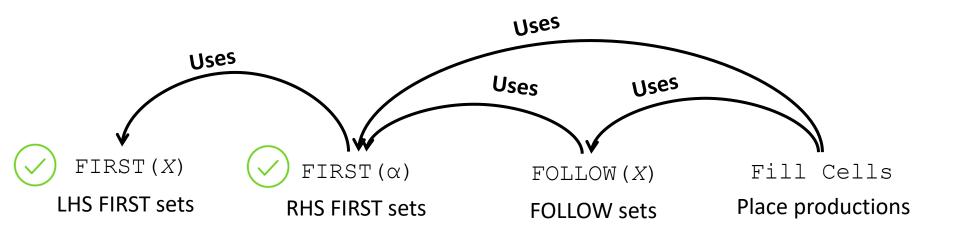
S ::= X b X | ε X ::= a X | ε

Building LL(1) Parsers

- LL(1) Game Plan
- Building a Grammar's FIRST sets
- FOLLOW Sets

Selector Table Dependencies Building the Selector Table



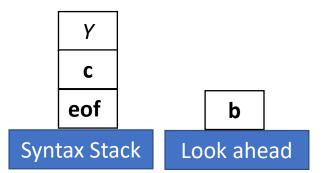


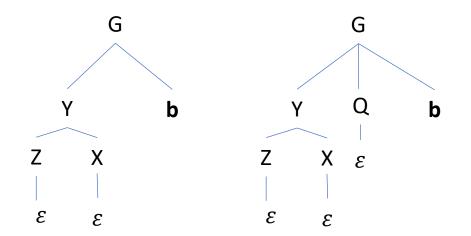
Follow Set Intuition LL(1) The Big Picture

Example Grammar Fragment

$$P_3$$
 $Y ::= Z X$

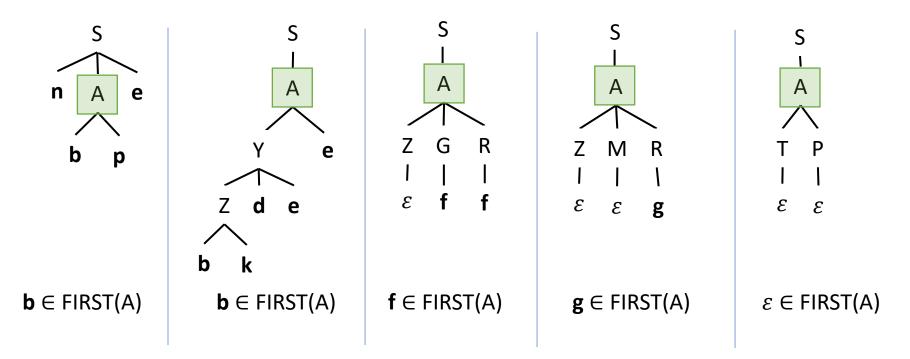
- Yes, if b is in FIRST(Z)
- Yes, if ε is in FIRST(Z) and b is in FIRST(X)
- Yes, if ε is in FIRST(Z) and FIRST(X), and b can FOLLOW right after Y





Again, The Parse tree Perspective Consider the Trees

FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε , then ε is in FIRST(X).

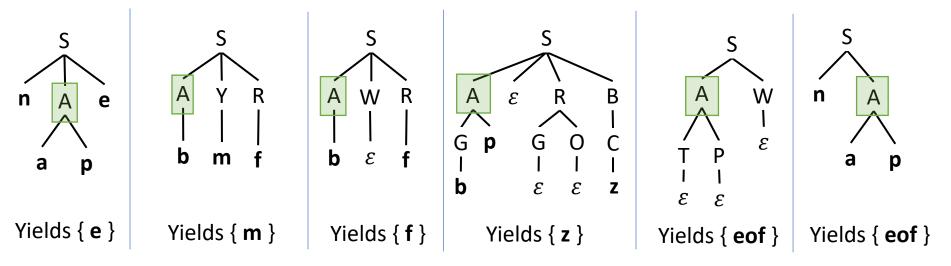


Again, The Parse tree Perspective Consider the Trees

FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε , then ε is in FIRST(X).

FOLLOW(X): The set of terminals that begin strings <u>derivable right after</u> X, and **EOF** if there could be *no* terminals after subtree

What does each parse tree say about FOLLOW(A) where 5 is start?



If these were the only parse trees, what is FOLLOW(A)?

{ e, m, f, z, eof }

S ::= X bS ::= X bS ::= X bX ::=
$$\varepsilon$$
X

FIRST(X **b**) = { **a**, **b** }

S ::= X **b**

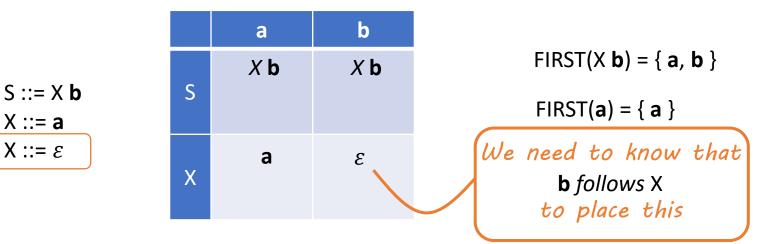
X ::= a

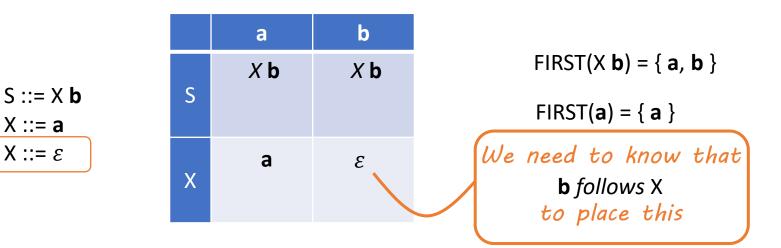
X ::= ε

FIRST(X **b**) = { **a**, **b** }

```
FIRST(a) = { a }
```


26





S	::=	Х	
Х	::=	а	Χ
Х	::=	Е	

	а	EOF
S	X	X
х	a X	ε

FOLLOW Sets, Formally Building Parser Tables

FOLLOW(X) =
$$\left\{ t \mid (t \in \Sigma \land S \Rightarrow \alpha X t \beta) \lor (t = eof \land S \Rightarrow \alpha X) \right\}$$

also eof when X ends a derivation

1

Example: Building Follow Sets Building Parser Tables

FOLLOW(X) for each nonterminal X

C₁: If X is the start nonterminal, add **eof**

For all $Z ::= \alpha X \beta$ (where α and/or β may be empty) C₂: Add FIRST(β) – { ϵ }

 C_3 : If ε is in FIRST(β) add FOLLOW(Z)

C₄: If β is empty add FOLLOW(*Z*)

Repeat for each nonterminal until saturation

<u>Grammar</u>	FOLLOW(X) for nonter	rmir	nal <u>X</u>
1 S ::= a	C ₁ : If <i>X</i> is the start non	tern	ninal, add eof
② S ::= b R	For all <i>Z</i> ::= α X β (whe	re α	and/or β may be empty)
3 Q ::= ε	C ₂ : Add FIRST(β) – {ε	-	
4 <i>R</i> ::= <i>Q c</i>	C_3 : If ε is in FIRST(β)		
G R ::= Q S	C_4 : If β is empty add		
6 <i>R</i> ::= <i>Q Q</i>	Repeat for each nontern	nina	until saturation
FIRST(S) = { a, b }	Building Follow(S) (5 i	n fa	or X)
FIRST(Q) = { ε }	C ₁ : S is the start nontermine	nal, s	o add eof
FIRST(R) = { c , a , b , ε	Rules of the form	ר Z ו	$:= \alpha X \beta$
FIRST(Q c) = { c }	R ::= QS	\$ R	Q S empty
FIRST(Q S) = { a, b }			
FIRST(Q Q) = { <i>ε</i> }		C ₂ :	β is empty, so add nothing
FOLLOW(S) = { eof }		C ₃ :	β is empty, so N/A
FOLLOW(Q)		•	
FOLLOW(R)		C ₄ :	β is empty, so add FOLLOW(R), which is currently nothing

<u>Grammar</u>	FOLLOW(X) for nonte	erminal <u>X</u>
1 S ::= a	C ₁ : If <i>X</i> is the start no	nterminal, add eof
2 S ::= b R	For all $Z ::= \alpha X \beta$ (wh	ere α and/or β may be empty)
3 Q ::= ε	C ₂ : Add FIRST(β) – {	
④ <i>R</i> ::= Q c	C_3 : If ε is in FIRST(β	
⑤ <i>R</i> ::= Q S	C_4 : If β is empty add	
6 <i>R</i> ::= Q Q	Repeat for each nonter	minal until saturation
	<u>Building Follow(Q)</u>	in for X)
$FIRST(S) = \{a, b\}$	C_1 : N/A (Q not the start r	nonterminal)
$FIRST(Q) = \{ \varepsilon \}$	-	
FIRST(R) = { c , a , b , ε	Rules of the form	$m Z ::= \alpha X \beta$
FIRST(Q c) = { c }	R ::= Q c adds { c }	R empty Q C
FIRST(Q S) = { a, b }		
FIRST(Q Q) = { <i>ε</i> }	R ::= Q S	C ₂ : β is c , add FIRST(c) - $\varepsilon = \{ c \}$
FOLLOW(S) = { eof }		C ₃ : β is c , ε ∉ FIRST(c), so N/A
➡ FOLLOW(Q)	R ::= <u>Q</u> Q	
FOLLOW(R)	R ::= <i>Q Q</i>	C_4 : β is not empty, so N/A

<u>Grammar</u>	FOLLOW(X) for nonte	erminal <u>X</u>
1 S ::= a	C ₁ : If <i>X</i> is the start no	nterminal, add eof
2 S ::= b R	For all $Z ::= \alpha X \beta$ (wh	ere α and/or β may be empty)
3 Q ::= ε	C ₂ : Add FIRST(β) – {	-
④ <i>R</i> ::= <i>Q c</i>	C_3 : If ε is in FIRST(β)	
⑤ <i>R</i> ::= Q S	C_4 : If β is empty add	
G R ::= Q Q	Repeat for each nonter	minal until saturation
	<u>Building Follow(Q)</u>	in for X)
$FIRST(S) = \{a, b\}$	C_1 : N/A (Q not the start r	nonterminal)
$FIRST(Q) = \{ \varepsilon \}$	± .	
FIRST(R) = { c, a, b , ε	Rules of the form	$n Z := \alpha X \beta$
FIRST(Q c) = { c }	R ::= Q c adds { c }	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
FIRST(Q S) = { a, b }		
FIRST(Q Q) = { <i>ε</i> }	R ::= QS adds {a,b}	C ₂ : β is <i>S</i> , FIRST(<i>S</i>) - ε = { a , b }
FOLLOW(S) = { eof }		C ₃ : β is <i>S</i> , ε ∉ FIRST(<i>S</i>), so N/A
➡ FOLLOW(Q)	R ::= <u>Q</u> Q	
FOLLOW(R)	R ::= <i>Q Q</i>	C_4 : β is not empty, so N/A

<u>Grammar</u>	FOLLOW(X) for nonterminal X	
1 S ::= a	C ₁ : If X is the start nonterminal, add ec	of
② S ::= b R	For all Z ::= $\alpha X \beta$ (where α and/or β m	ay be empty)
3 Q ::= ε	C_2 : Add FIRST(β) – { ϵ }	
④ <i>R</i> ::= Q c	C_3 : If ε is in FIRST(β) add FOLLOW(Z)	
⑤ <i>R</i> ::= Q S	C_4 : If β is empty add FOLLOW(Z)	
⑥ <i>R</i> ::= Q Q	Repeat for each nonterminal until saturat	on
FIRST(S) = { a, b }	Building Follow(Q) (Q in for X)	
FIRST(Q) = { ε }	C_1 : N/A (Q not the start nonterminal)	
FIRST(R) = { \mathbf{c} , \mathbf{a} , \mathbf{b} , ε	Rules of the form Z ::= $\alpha X \beta$	
FIRST(Q c) = { c }	$R ::= Q c adds \{ c \} \qquad \begin{array}{c} S & S & S \\ R & empty & Q & Q \end{array}$	
FIRST(Q S) = { a, b }		
FIRST(Q Q) = { <i>ε</i> }	R ::= Q S adds { a,b } C_2 : β is Q , FIRST(Q) - ɛ = { }
FOLLOW(S) = { eof }	$\mathbf{R} := \mathbf{Q} \mathbf{Q}$ adds () \mathbf{C}_3 : β is Q, Z is \mathbf{R}, ε	\in FIRST(Q).
➡ FOLLOW(Q)	$R ::= QQ adds \{ \} C_3: \beta IS Q, Z IS R, \varepsilon$ add FOLLOW(R	
FOLLOW(R)	R ::= QQ adds { }	so N/A

<u>Grammar</u>	FOLLOW(X) for nonterminal X	
1 S ::= a	C ₁ : If <i>X</i> is the start nonterminal, add eof	
② S ::= b R	For all Z ::= $\alpha \times \beta$ (where α and/or β may be empty)	
3 Q ::= ε	C_2 : Add FIRST(β) – { ϵ }	
④ <i>R</i> ::= <i>Q c</i>	C_3 : If ε is in FIRST(β) add FOLLOW(Z)	
⑤ R ::= Q S	C_4 : If β is empty add FOLLOW(<i>Z</i>)	
● R ::= Q Q	Repeat for each nonterminal until saturation	
FIRST(S) = { a, b }	Building Follow(Q) (q in for X)	
	C_1 : N/A (Q not the start nonterminal)	
$FIRST(Q) = \{ \varepsilon \}$	$\overline{P}_{\rm uloc}$ of the form $7 \rm u = \alpha V \beta$	
FIRST(R) = { c , a , b , ε	Rules of the form Z ::= $\alpha X \beta$	
FIRST(Q c) = { c }	$R ::= Q c adds \{ c \} \qquad R \qquad Q \qquad Q \qquad empty$	
FIRST(Q S) = { a, b }		
FIRST(Q Q) = { <i>ε</i> }	R ::= Q S adds { a,b } C_2 : β is empty, so add { }	
FOLLOW(S) = { eof }	C_3 : β is empty, so N/A	
➡ FOLLOW(Q)	$R ::= Q Q \text{ adds } \{\}$	
FOLLOW(R)	$C_4: \beta \text{ is not empty, Z is R,} \\ R ::= QQ adds \{ \} add FOLLOW(R) = \{ \}$	

<u>Grammar</u>	FOLLOW(X) for nonterminal X
1 S ::= a	C ₁ : If X is the start nonterminal, add eof
2 S ::= b R	For all Z ::= $\alpha \times \beta$ (where α and/or β may be empty)
3 Q ::= ε	C_2 : Add FIRST(β) – { ϵ }
④ <i>R</i> ::= <i>Q c</i>	C_3 : If ε is in FIRST(β) add FOLLOW(Z)
⑤ <i>R</i> ::= Q S	C_4 : If β is empty add FOLLOW(Z)
6 R ::= Q Q	Repeat for each nonterminal until saturation
	Building Follow(Q) (Q in for X)
$FIRST(S) = \{a, b\}$	C_1 : N/A (Q not the start nonterminal)
$FIRST(Q) = \{ \varepsilon \}$	
FIRST(R) = { c, a, b , ε	Rules of the form Z ::= $\alpha X \beta$
FIRST(Q c) = { C }	$R ::= \mathbf{Q} \mathbf{c} \text{adds} \{ \mathbf{c} \}$
FIRST(Q S) = { a, b }	
FIRST(Q Q) = { ε }	R ::= Q S adds { a,b }
FOLLOW(S) = { eof }	
➡ FOLLOW(Q) = { c, a, b	$R ::= Q Q adds \{ \}$
FOLLOW(R)	R ::= QQ adds { }

<u>Grammar</u>	FOLLOW(X) for nonterminal X						
1 S ::= a	C ₁ : If X is the start nonterminal, add eof						
2 S ::= b R	For all Z ::= $\alpha X \beta$ (where α and/or β may be empty)						
3 Q ::= ε	C_2 : Add FIRST(β) – { ϵ }						
④ <i>R</i> ::= <i>Q c</i>	C_3 : If ε is in FIRST(β) add FOLLOW(Z)						
⑤ <i>R</i> ::= Q S	C_4 : If β is empty add FOLLOW(Z)						
⑤ <i>R</i> ::= Q Q	Repeat for each nonterminal until saturation						
FIRST(S) = { a, b } FIRST(Q) = { ε } FIRST(R) = { c, a, b, ε FIRST(Q c) = { c } FIRST(Q S) = { a, b } FIRST(Q Q) = { ε } FOLLOW(S) = { eof }	$\frac{\text{Building Follow(R)} (R \text{ in for } X)}{C_1: N/A (R \text{ not the start nonterminal})}$ $Rules \text{ of the form } Z ::= \alpha X \beta$ $S ::= b R \text{ adds } \{ \text{ eof } \}$ $C_2: \beta \text{ is empty, add } \{ \}$ $C_3: \beta \text{ is empty, N/A}$						
FOLLOW(Q) = { c, a, b } C_4 : Z is S, add FOLLOW(S) = { eof }							
➡ FOLLOW(R)							

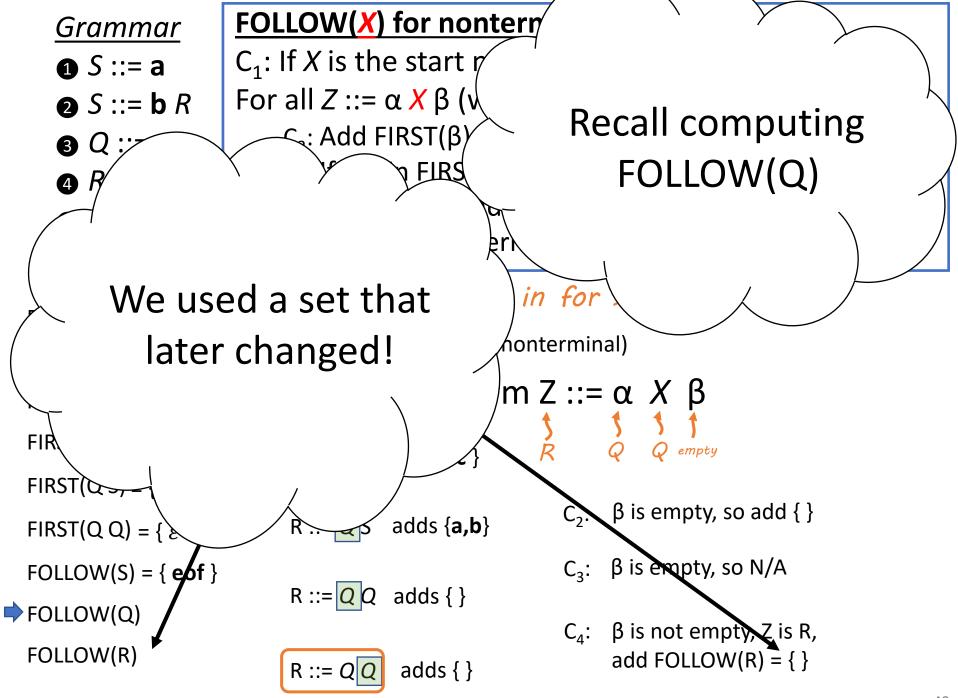
Grammar	FOLLOW(X) for nonterminal X
1 S ::= a	C ₁ : If X is the start nonterminal, add eof
2 S ::= b R	For all Z ::= $\alpha X \beta$ (where α and/or β may be empty)
β Q ::= ε	C ₂ : Add FIRST(β) – {ε}
4 <i>R</i> ::= <i>Q c</i>	C ₃ : If ε is in FIRST(β) add FOLLOW(<i>Z</i>)
B <i>R</i> ::= <i>Q S</i>	C ₄ : If β is empty add FOLLOW(<i>Z</i>)
$\mathbf{G} R ::= Q Q$	Repeat for each nonterminal until saturation

```
FIRST(S) = \{a, b\}
  FIRST(Q) = \{ \varepsilon \}
  FIRST(R) = \{ c, a, b, \varepsilon \}
  FIRST(Q c) = { c } S ::= b R adds { eof }
  FIRST(Q S) = { a, b }
  FIRST(Q Q) = \{ \varepsilon \}
  FOLLOW(S) = { eof }
  FOLLOW(Q) = { c, a, b }
➡ FOLLOW(R) = { eof }
```

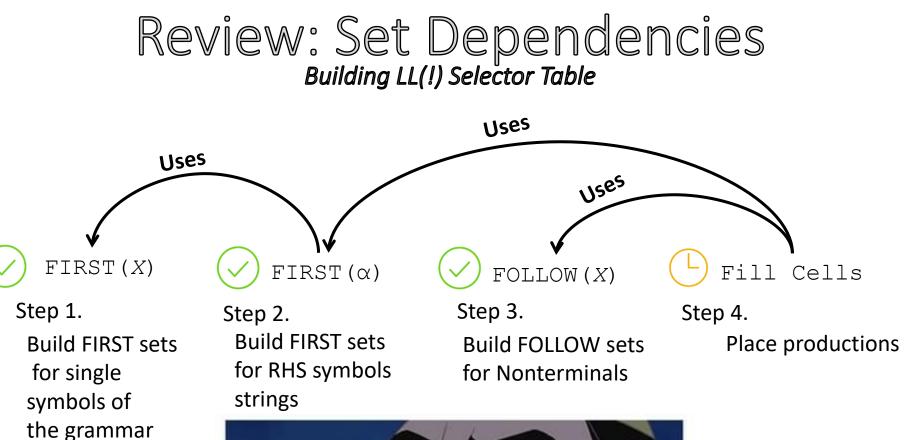
Grammar	FOLLOW(X) for nonterminal X						
1 S ::= a	C ₁ : If X is the start nonterminal, add eof						
② S ::= b R	For all Z ::= $\alpha \times \beta$ (where α and/or β may be empty)						
β Q ::= ε	C_2 : Add FIRST(β) – { ϵ }						
a R ::= Q c	C_3 : If ε is in FIRST(β) add FOLLOW(Z)						
G R ::= Q S	C_4 : If β is empty add FOLLOW(<i>Z</i>)						
G R ::= Q Q	Repeat for each nontermina until saturation						

```
FIRST(S) = { a, b }
  FIRST(Q) = \{ \varepsilon \}
  FIRST(R) = \{ c, a, b, \varepsilon \}
  FIRST(Q c) = { c }
  FIRST(Q S) = { a, b }
  FIRST(Q Q) = \{ \varepsilon \}
  FOLLOW(S) = { eof }
  FOLLOW(Q) = { c, a, b }
➡ FOLLOW(R) = { eof }
```

All done?



Grammar 1 S ::= a 2 S ::= b R 3 Q ::= ε 4 R ::= Q c 5 R ::= Q S 6 R ::= Q Q	1 $S ::= a$ 2 $S ::= b R$ 3 $Q ::= \varepsilon$ 4 $R ::= Q c$ 5 $R ::= Q S$ 5 $R ::= Q S$ C ₁ : If X is the start nonterminal, add eof For all Z ::= $\alpha X \beta$ (where α and/or β may be empty) C ₂ : Add FIRST(β) – { ε } C ₃ : If ε is in FIRST(β) add FOLLOW(Z) C ₄ : If β is empty add FOLLOW(Z) Repeat for each popterminal until saturation				
FIRST(S) = { a, b } FIRST(Q) = { ε } FIRST(R) = { c, a, b, ε FIRST(Q c) = { c }	Run FOLLO	P <u>SA</u> OW and FIRST s until saturation			
FIRST(Q S) = { a, b } FIRST(Q Q) = { <i>ε</i> }	Round 2	<u>Round 3</u>			
FOLLOW(S) = { eof }	FOLLOW(S) = { eof }	FOLLOW(S) = { eof }			
FOLLOW(Q) ={ c , a , k	b } FOLLOW(Q) = { c , a , b , eof }	FOLLOW(Q) = { c, a, b, eof }			
FOLLOW(R) = { eof }	FOLLOW(R) = { eof }	FOLLOW(R) = { eof }			



LL(1) Selector Table Algorithm Building LL(1) Selector Table

for each production X ::= α
for each terminal t in FIRST(α)
 put X ::= α in Table[X][t]
if ε is in FIRST(α)
 for each t in FOLLOW(X)
 put X::= α in Table[X][t]

LL(1) Selector Table Algorithm Building LL(1) Selector Table

Time permitting: Examples

fo	f ε is : for ead	termina ::= α in in FIRS ch term	al t in n Table Γ(α) inal t :	FIRST(c	OW(X)	В ::=	B c D B a b c S d ε	FIRST (S)= $\{a, c, d\}$ FIRST (B)= $\{a, c\}$ FIRST (D)= $\{d, \epsilon\}$ FIRST (B c)= $\{a, c\}$ FIRST (D B)= $\{d, a, c\}$ FIRST (a b)= $\{a\}$ FIRST (c S)= $\{c\}$			
	а	b	С	d	eof			FOLLOW (S) = { eof, c } FOLLOW (B) = { c, eof } FOLLOW (D) = { a, c }			
S						Fo	r each prod	uction X ::= α			
						E	3 ::= a b	B ab			
В	a b					L		ninals in FIRST(α) = { a }: = a b @ Table[<i>B</i>][a]			
						З	is not in Fl	RST(α) = { a }:			
D						Done with this production					

fo f	f ɛ is ː for ead	termina ::= α in in FIRS ch term	al t in n Table Γ(α) inal t :	FIRST(c	OW (X)	<u>CFG</u> S ::= B c D B B ::= a b c S D ::= d ε	FIRST (S)= $\{a, c, d\}$ FIRST (B)= $\{a, c\}$ FIRST (D)= $\{d, \varepsilon\}$ FIRST (B c)= $\{a, c\}$ FIRST (D B)= $\{d, a, c\}$ FIRST (a b)= $\{a\}$ FIRST (c S)= $\{c\}$					
	а	b	С	d	eof		FOLLOW (S) = { eof , c } FOLLOW (B) = { c , eof } FOLLOW (D) = { a , c }					
S						For each prod	uction X ::= α					
						D ::= ε	D E					
В	a b					Look at termin	als in FIRST(α) = { ε }					
D						There are	e none					
						Because ε is in	$\alpha FIRST(\alpha)$					
D	ε		ε			Look at everyt	hing in Follow(X) = { a , c }					
						Put D ::= ε	::= ε @ Table[D][a]					
	Put D ::= ε @ Table[D][c]											

Table[X][t]	<u>CFG</u>		
for each production $X ::= \alpha$	S	::=	B c D B
for each terminal t in FIRST(α)	В	::=	a b c S
put $X ::= \alpha$ in Table[X][t] if ε is in FIRST(α)			d ε
for each terminal \mathbf{t} in FOLLOW(X)			
put $X ::= \alpha$ in Table $[X] [t]$			

	а	b	C	d	eof
S	DB		DB		
В	a b				
D	Е		Е		

FIRST (S) = { a , c , d }
FIRST (B) = { a , c }
FIRST (D) = { d , ε }
FIRST (B c) = { a, c }
FIRST (D B) = { d , a , c }
FIRST (a b) = { a }
FIRST (c <i>S</i>) = { c }
FOLLOW (S) = { eof, c }
FOLLOW (B) = { c , eof }

FOLLOW (D) = { **a**, **c** }

For each production $X ::= \alpha$ S ::= D B S D B

Look at terminals in FIRST(α) = { **d**, **a**, **c** }

Put S ::= D B @ Table[S][**d**]

Put S ::= D B @ Table[S][a]

Put S ::= D B @ Table[S][c]

 ε is not in FIRST(α) = { **d**, **a**, **c** }:

Done with this production

Table[X][t]		FG	
for each production X ::= α	S	::=	B c D B
for each terminal t in FIRST(α)	В	::=	a b c S
put $X ::= \alpha$ in Table[X][t]			
if ε is in FIRST(α)	שן	=	d ε
for each terminal ${f t}$ in FOLLOW(X)			
put X ::= α in Table[X][t]			
	1		

FIRST (S)	=	{ a, c, d }
FIRST (B)	=	{ a, c }
FIRST (D)	=	{ d , ε }
FIRST (B c)	=	{ a, c }
FIRST (D B)	=	$\{ d, a, c \}$
FIRST (a b)	=	{ a }
FIRST (c <i>S</i>)	=	{ c }

FOLLOW (S) = { eof, c } FOLLOW (B) = { c, eof } FOLLOW (D) = { a, c }

For each production X ::= α S ::= B c S B c

Look at terminals in FIRST(α) = { **a**, **c** }

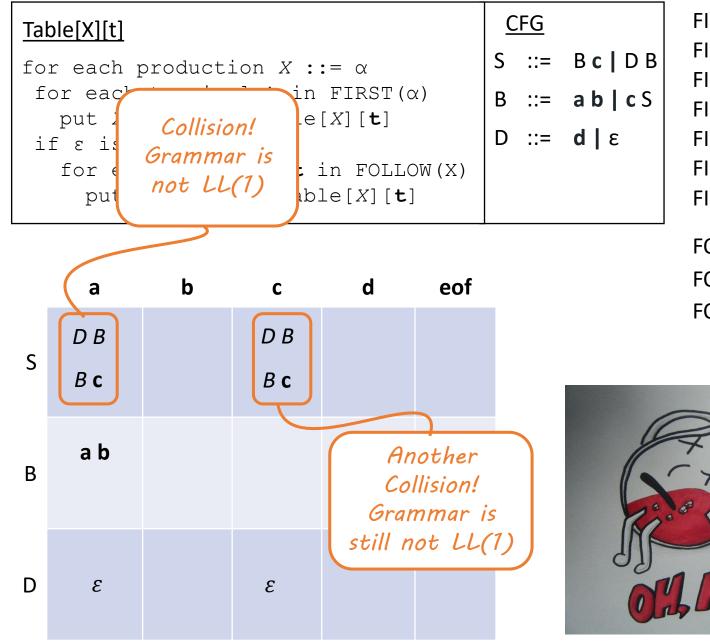
Put S ::= B C @ Table[S][**a**]

Put S ::= B C @ Table[S][c]

 ε is not in FIRST(α) = { **a** }:

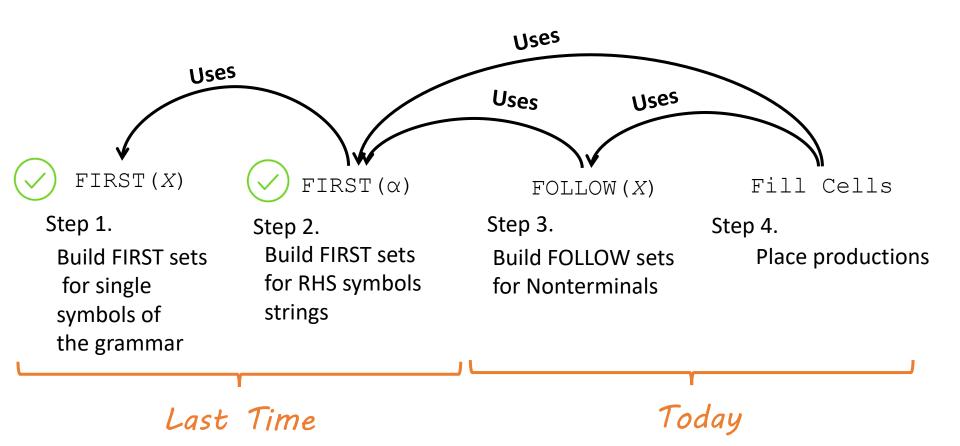
Done with this production

	а	b	C	d	eof
6	DB		DB		
S	В с		В с		
В	a b				
D	Е		ε		



FIRST (S) = { a, c, d } FIRST (B) = { a, c } FIRST (D) = { d, ϵ } FIRST (B c) = { a, c } FIRST (D B) = { d, a, c } FIRST (a b) = { a } FIRST (c S) = { c } FOLLOW (S) = { eof, c } FOLLOW (B) = { a, c }

Review: Selector Table Dependencies Review Lecture 9 – FIRST Sets



A Parse Tree Perspective Building LL(1) Selector Table: FIRST sets, single symbol

FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε , then ε is in FIRST(X).

