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Check-in
Review: Predictive Parsing
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Assume an LL(1) parser with… this syntax stack: and this ( lookahead token:

Draw the configuration of the parser after it processes the tokens ( )

this selector table:
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Housekeeping
Administrivia

Projects

Trials

• Trial 1 due tonight
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FIRST Sets

University of Kansas | Drew Davidson
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H2

Last Time
Review – Predictive Parsing

Intro to Parsing

• Complexity

A New Type of Language – LL(k)

• Intro

• LL(1) parsing
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Parsing

You Should Know

• What parsing is
• What LL(1) languages are
• How an LL(1) parser operates
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Where we Left Off
Review – Predictive Parsing

The language might be LL(1) … even when the 
grammar is not!
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Predicted Parse Tree Input String
S

Candidates

❶ ❷or

a
Predicted Parse Tree Lookahead

S

Candidates

❶

a

look
look

S ::= a b 
     | a c

❶

❷

Grammar 2Grammar 1
S ::= a X
X ::= b 
X ::= c

❶

❷

❸

Same language
Different grammars



Today’s Outline
Preview – FIRST Sets

Transforming Grammars

• Fixing LL(1) “near misses”

Building LL(1) Parsers

• What the selector table needs

• FIRST Sets
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Parsing



LL(1) Grammar Limitations
Transforming Grammars – Fixing LL(1) Near Misses

Given a language, we can’t 
always find an LL(1) 
grammar even if one exists

• Best we can do: simple 
transformations that 
remove “obvious” 
disqualifiers
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Checking if a Grammar is LL(1)
Transforming Grammars – Fixing LL(1) Near Misses

If either of the following hold, the 
grammar is not LL(1): 

• The grammar is left-recursive

• The grammar isn’t left-factored
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We can transform some grammars while 
preserving the recognized language



(Immediate) Left Recursion
Transforming Grammars – Fixing LL(1) Near Misses

• Recall, a grammar such that 𝑋 ֜
+

𝑋 α is left 
recursive

• A grammar is immediately left recursive if this 
can happen in one step:

                            A → A α | β
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Immediate Left Recursion Removal
(Predictive) Parsing - LL(1) Transformations
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A → A α | β A → β A’
A’→ α A’
     |  ε

(for a single immediately left-recursive rule) 

Arbitrary Strings

(nonterminal or terminal)
A

A’

A’

A’

β

𝛼

𝛼

𝛼 A’

𝜀

A

β

A

𝛼

A

𝛼

A

𝛼



Immediate Left Recursion Removal
(Predictive) Parsing - LL(1) Transformations
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Exp     ::=   Exp  – Factor 

            |    Factor 

Factor ::=   intlit | ( Exp ) 

A → A α | β
A → β A’
A’→ α A’
     |  ε

Exp

Factor

- FactorExp

A A
α

β



Immediate Left Recursion Removal
(Predictive) Parsing - LL(1) Transformations
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Exp     ::=   Exp  – Factor 

            |    Factor 

Factor ::=   intlit | ( Exp ) 

A → A α | β
A → β A’
A’→ α A’
     |  ε

Exp     ::=   Factor Exp’ 

Exp’    ::=   - Factor  Exp’ 

            |    ε
Factor ::=   intlit | ( Exp ) 

Exp

Factor

- FactorExp

A A
α

β

Exp

Factor

Exp’

Exp’Exp’

- Factor



Immediate Left Recursion Removal
(Predictive) Parsing - LL(1) Transformations
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A ::= β1 
    |   β2  
    |   βn 
    |   A α1 
    |   A α2 
    |   A αm

A  ::=   β1 A’
      |    β2 A’ 
      |    βn A’
A’ ::=   α1 A’
      |    α2 A’
      |    αm A’
      |    𝜀

Given Productions Convert to

(general rule) 



Left Factoring Grammar
(Predictive) Parsing - LL(1) Transformations

• If a nonterminal has (at least) two productions 
whose RHS has a common prefix, the grammar is 
not left factored 

   (and not an LL(1) grammar)
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Exp ::= ( Exp ) 
        |   { Exp }
        |   ( )
        |   a b
        |   b b 

Question: What makes this grammar not left-factored?



Left Factoring: Simple Rule
(Predictive) Parsing - LL(1) Transformations
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A → α A’
     A’ → β1 | β2

A → α β1 | α β2

Pull suffix into 

a new nonterminal

Add a new rule 

for suffixes

Given Productions Convert to

X ::= a b c d
X ::= a b e f

α β1

β2

X ::= a b X’
X’ ::= c d | e f



Attempt LL(1) Conversion
(Predictive) Parsing - LL(1) Transformations
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Exp ::= ( Exp ) 

        |  Exp   Exp 

        |   (  )

Remove immediate left-recursion

A → A α | β
A → β A’
A’→ α A’
     |  ε

becomes

Exp  ::=  ( Exp )  Exp’ 

          |   (  )   Exp'

Exp’ ::=  Exp  Exp’ 

          |  ε

β1

β2

α1

A

A

A A’β1

β2 A’

A’ α1 A’

new ε



Attempt LL(1) Conversion
(Predictive) Parsing - LL(1) Transformations
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Remove immediate left-recursion Left-factored

A → α A’
A’ → β1 | β2

A → α β1 | α β2
becomes

Exp ::= ( Exp ) 

        |  Exp   Exp 

        |   (  )

Exp  ::=  ( Exp )  Exp’ 

          |   (  )   Exp'

Exp’ ::=  Exp  Exp’ 

          |  ε

A β1
α

β2
α

Exp   ::= (  Exp''
Exp′′ ::= Exp ) Exp′
           | ) Exp' 
Exp′  ::= Exp Exp′ 
           |   ε

A’α

A’

A

β1

β2



Attempt LL(1) Conversion
(Predictive) Parsing - LL(1) Transformations
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Remove immediate left-recursion Left-factored

Exp ::= ( Exp ) 

        |  Exp   Exp 

        |   (  )

Exp  ::=  ( Exp )  Exp’ 

          |   (  )   Exp'

Exp’ ::=  Exp  Exp’ 

          |  ε

Exp   ::= (  Exp''
Exp′′ ::= Exp ) Exp′
           | ) Exp' 
Exp′  ::= Exp Exp′ 
           |   ε



Current Status
(Predictive) Parsing - LL(1) Transformations

• We’ve removed 2 disqualifiers from LL(1)
• Left-recursive grammar

• Not Left-Factored grammar
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Let’s Check on the Parse Tree
LL(1) Grammar Transformations
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Exp

Exp - Factor

Exp - Factor

Factor

2

3

4

Exp     →   Exp  – Factor 

            |    Factor 

Factor →   intlit | ( Exp ) 

Exp     →   Factor Exp’ 

Exp’    →   - Factor  Exp’ 

            |    ε
Factor →   intlit | ( Exp ) 

Exp

Factor Exp

2
- Factor Exp

- Factor Exp3

4 ε



Let’s Check on the Parse Tree
LL(1) Grammar Transformations

21

Exp     →   Factor Exp’ 

Exp’    →   - Factor  Exp’ 

            |    ε
Factor →   intlit | ( Exp ) 

Exp

Factor Exp

2
- Factor Exp

- Factor Exp3

4 ε



Nevermind, We’ll Fix Parse Trees Later
LL(1) Grammar Transformations
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¯\_(ツ)_/¯



Today’s Outline
Lecture 9 – FIRST sets

Transforming Grammars

• Fixing LL(1) “near misses”

Building LL(1) Parsers

• Understanding LL(1) Selector Tables

• FIRST Sets
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Parsing



Recall the LL(1) Parser’s Operation
Building LL(1)Selector Table

LL(1)

• Processes Left-to-right

• Leftmost derivation

• 1 token of lookahead

Predictive Parser: “guess & check”

• Starts at the root, guesses how to unfold a 
nonterminal (derivation step)

• Checks that terminals match prediction

24



S

Xa

c

Lookahead: T2 (c)

S

Xa
Lookahead:  T2 (c)

Recall the LL(1) Parser’s Operation
Building LL(1)Selector Table
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Example LL(1) Grammar: 
S ::= a X
X ::= b a | c

Example Input: 
a   c

T1 T2

S Lookahead: T1 (a)

S

Xa
Lookahead: T1 (a)

“guess”
S ֜ a X

“check” a
is in input

“guess”
X ֜ c

“check” c
Is in input

In practice, 
table-driven parser

uses a stack to 
match this tree

Parser state

S

Xa

c

Lookahead: T2 (c)
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How does the Parser Guess?
Building Parser Tables

The intuition is a bit tricky

• We need to get into the mindset of the parser

26

Pretend your consciousness has been transported inside an LL(1) parser
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Become the Parser
Building Parser Tables
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You need to unfold a nonterminal X 
with lookahead token t

Assume there’s an X production X ::= 𝜋1 
𝜋2

(where 𝜋1 and 𝜋2 are some kind of symbol) 

How do we know to guess this production?

S

Xa
Lookahead:  T2 (t)

Y

Parse in Progress

…  
                    X ::= 𝜋1 

𝜋2 
…  

Grammar Fragment

S

Xa Y

𝜋1 𝜋2

S

Xa Y

𝜋1 𝜋2
Z

Q f

t

t

Case 1: 𝜋1 subtree 
may start with t



Z

Q f

t

Live Assignments
P1
H2

Become the Parser
Building Parser Tables
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You need to unfold a nonterminal X 
with lookahead token t

Assume there’s an X production X ::= 𝜋1 
𝜋2

(where 𝜋1 and 𝜋2 are some kind of symbol) 

How do we know to guess this production?

Case 2: 𝜋1 subtree may be 
empty and 𝜋2 starts with t 

S

Xa
Lookahead:  T2 (t)

Y

…  
                    X ::= 𝜋1 

𝜋2 
…  

Parse in Progress

Grammar Fragment

S

Xa Y

𝜋1 𝜋2

S

Xa Y

𝜋1 𝜋2
𝜀 t 𝜀

Case 1: 𝜋1 subtree 
may start with t

Z

Q f

t

S

Xa Y

𝜋2
Z

Q

𝜋1

𝜀 𝜀

R
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Become the Parser
Building Parser Tables
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You need to unfold a nonterminal X 
with lookahead token t

Assume there’s an X production X ::= 𝜋1 
𝜋2

(where 𝜋1 and 𝜋2 are some kind of symbol) 

How do we know to guess this production?

Case 2: 𝜋1 subtree may be 
empty and 𝜋2 starts with t 

S

Xa
Lookahead:  T2 (t)

Y

…  
                    X ::= 𝜋1 

𝜋2 
…  

Parse in Progress

Grammar Fragment

S

Xa Y

𝜋1 𝜋2

S

Xa Y

𝜋1 𝜋2

𝜀 𝜀

Case 1: 𝜋1 subtree 
may start with t

Z

Q

𝜀 𝜀

R

Case 3: both 𝜋1 and 𝜋2 may be
 empty and the sibling may 

start with t 

𝜀 t Z

Q f

t
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Become the Parser
Building Parser Tables
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You need to unfold a nonterminal X 
with lookahead token t

Assume there’s an X production X ::= 𝜋1 
𝜋2

(where 𝜋1 and 𝜋2 are some kind of symbol) 

How do we know to guess this production?

Case 2: 𝜋1 subtree may be 
empty and 𝜋2 starts with t 

S

Xa
Lookahead:  T2 (t)

Y

…  
                    X ::= 𝜋1 

𝜋2 
…  

Parse in Progress

Grammar Fragment

Case 1: 𝜋1 subtree 
may start with t

Case 3: both 𝜋1 and 𝜋2 may be
 empty and the sibling may 

start with t 

How can we account for 
these cases when 
building the parser?
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Become the Parser
Building Parser Tables
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You need to unfold a nonterminal X 
with lookahead token t

Assume there’s an X production X ::= 𝜋1 
𝜋2

(where 𝜋1 and 𝜋2 are some kind of symbol) 

How do we know to guess this production?

Case 2: 𝜋1 subtree may be 
empty and 𝜋2 starts with t 

S

Xa
Lookahead:  T2 (t)

Y

…  
                    X ::= 𝜋1 

𝜋2 
…  

Parse in Progress

Grammar Fragment

Case 1: 𝜋1 subtree 
may start with t

Case 3: both 𝜋1 and 𝜋2 may be
 empty and the sibling may 

start with t 

FIRST Sets FOLLOW Sets

Two sets are sufficient to capture these
cases and to build the selector table



Today’s Outline
Lecture 9 – FIRST sets

Transforming Grammars

• Fixing LL(1) “near misses”

Building LL(1) Parsers

• Reverse-Engineering Selector Tables

• FIRST Sets

32

Parsing
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An Informal Definition
Building LL(1) Selector Table: FIRST sets, single symbol
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FIRST(α) = The set of terminals that begin strings derivable 

    from α, and also, if α can derive ε, then ε is in FIRST(α).
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A Formal Definition
Building LL(1) Selector Table: FIRST sets, single symbol

34

FIRST(α) = The set of terminals that begin strings derivable 
    from α, and also, if α can derive ε, then ε is in FIRST(X).

Formally, FIRST(α) =  

 ො𝛼 ො𝛼 ∈ Σ ∧ α ֜
∗

ො𝛼β ∨ ො𝛼 = ε ∧ α ֜
∗

ε  
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A Parse Tree Perspective
Building LL(1) Selector Table: FIRST sets, single symbol
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A

eY

d eZ

kb

S

A

f

RZ G

f𝜀

S

A

b p

S

n e A

PT

𝜀 𝜀

S

What does the parse tree say about FIRST(A)?

FIRST(A)
includes

{ b }
Again, FIRST(A)

includes
{ b }

FIRST(A)
includes 

{ g }

A

RZ M

g𝜀

S

𝜀

FIRST(A)
Includes 

{ f }

FIRST(A)
includes 

{ 𝜀 }

{ b, f, g, 𝜀 }If these were the only possible parse trees, then FIRST(A) =

FIRST(α) = The set of terminals that begin strings derivable 
    from α, and also, if α can derive ε, then ε is in FIRST(X).
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A Parse Tree Perspective
Building LL(1) Selector Table: FIRST sets, single symbol

This isn’t how you build FIRST sets

• Looking at parse trees is illustrative for concepts only

• We need to derive FIRST sets directly from the 
grammar

36

FIRST(α) = The set of terminals that begin strings derivable 
    from α, and also, if α can derive ε, then ε is in FIRST(X).
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Building FIRST Sets: Methodology
Building Parser Tables

First sets exist for any arbitrary string of symbols α

• Defined in terms of FIRST sets for a single symbol
• FIRST of an alphabet terminal

• FIRST for ε

• FIRST for a nonterminal

• Use single-symbol FIRST to construct symbol-string FIRSTS

37



Rules for Single Symbols
Building Parser Tables

38

Building FIRST for terminals

FIRST(t) = { t } for t in Σ 

FIRST(𝜀) = { 𝜀 }

Building FIRST(X) for nonterminal X

For each X ::= α1 α2 … αn

 C1: add FIRST(α1) - 𝜀

 C2: If 𝜀 could “prefix” FIRST(αk), add FIRST(αk)- 𝜀

 C3: If 𝜀 is in every FIRST set α1 … αn, add 𝜀

FIRST(X) = The set of terminals that begin strings derivable 
    from X, and also, if X can derive ε, then ε is in FIRST(X).



Rules for Single Symbols
Building LL(1) Parsers

39

Building FIRST(X) for nonterminal X

For each X ::= α1 α2 … αn

 C1: add FIRST(α1) - 𝜀

 C2: If 𝜀 could “prefix” FIRST(αk), add FIRST(αk)- 𝜀

 C3: If 𝜀 is in every FIRST set α1 … αn, add 𝜀



Rules for Single Symbols
Building LL(1) Parsers

40

Building FIRST(X) for nonterminal X

For each X ::= α1 α2 … αn

 C1: add FIRST(α1) - 𝜀

 C2: If 𝜀 could “prefix” FIRST(αk), add FIRST(αk)- 𝜀

 C3: If 𝜀 is in every FIRST set α1 … αn, add 𝜀

Say there’s a production 

X ::= Y Z R T

and we know 

FIRST(Y) = { 𝜀, a } 

FIRST(Z) = { 𝜀, b, m } 

FIRST(R) = { c } 

FIRST(T) = { d } 

By C2 clause FIRST(X) includes b, m and c 

b,m

c

because FIRST of every symbol before the 2nd includes 𝜀)

because FIRST of every symbol before the 3rd includes 𝜀)

Z in this case

R in this case

FIRST(X) does not add d in this clause
because not every FIRST set before the T 
includes 𝜀



Building FIRST Sets for Symbol Strings
Building LL(1) Parsers

41

Building FIRST(α)

Let α be composed of symbols α1 α2 … αn

 C1: add FIRST(α1) - 𝜀

 C2: If α1 … αk-1 is nullable, add FIRST(αk)- 𝜀

 C3: If α1 … αn is nullable, add 𝜀

Base Cases:

αi is is a terminal t. Add t

αi is is a nonterminal X. Add every leaf symbol that could begin an X subtree
                                          (this gets a bit complicated due to dependencies)



Summary: Explored the LL(1) Mindset
FIRST Sets

LL(1) “Parseability” Qualification

• Knowing the leftmost terminal of a parse (sub)tree is 
enough to pick the next derivation step

Elusive Conditions

• Two different rules could start with the same terminal (not 
left factored)

• The same rule(s) could be applied repeatedly (left recursive)

Began choosing matching productions to input

• What terminal could the production be the start of (FIRST)?

42
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