
Live Assignments
P1
H2

Check-in
Review: Predictive Parsing

1

S

()

(S)

S

)

)

eof

Assume an LL(1) parser with… this syntax stack: and this (lookahead token:

Draw the configuration of the parser after it processes the tokens ()

this selector table:

(

)

{ }

{ }

Live Assignments
P1
H2

Housekeeping
Administrivia

Projects

Trials

• Trial 1 due tonight

2

FIRST Sets

University of Kansas | Drew Davidson

3

Live Assignments
P1
H2

Last Time
Review – Predictive Parsing

Intro to Parsing

• Complexity

A New Type of Language – LL(k)

• Intro

• LL(1) parsing

4

Parsing

You Should Know

• What parsing is
• What LL(1) languages are
• How an LL(1) parser operates

Live Assignments
P1
H2

Where we Left Off
Review – Predictive Parsing

The language might be LL(1) … even when the
grammar is not!

5

Predicted Parse Tree Input String
S

Candidates

❶ ❷or

a
Predicted Parse Tree Lookahead

S

Candidates

❶

a

look
look

S ::= a b
 | a c

❶

❷

Grammar 2Grammar 1
S ::= a X
X ::= b
X ::= c

❶

❷

❸

Same language
Different grammars

Today’s Outline
Preview – FIRST Sets

Transforming Grammars

• Fixing LL(1) “near misses”

Building LL(1) Parsers

• What the selector table needs

• FIRST Sets

6

Parsing

LL(1) Grammar Limitations
Transforming Grammars – Fixing LL(1) Near Misses

Given a language, we can’t
always find an LL(1)
grammar even if one exists

• Best we can do: simple
transformations that
remove “obvious”
disqualifiers

7

Checking if a Grammar is LL(1)
Transforming Grammars – Fixing LL(1) Near Misses

If either of the following hold, the
grammar is not LL(1):

• The grammar is left-recursive

• The grammar isn’t left-factored

8

We can transform some grammars while
preserving the recognized language

(Immediate) Left Recursion
Transforming Grammars – Fixing LL(1) Near Misses

• Recall, a grammar such that 𝑋 ֜
+

𝑋 α is left
recursive

• A grammar is immediately left recursive if this
can happen in one step:

 A → A α | β

9

Immediate Left Recursion Removal
(Predictive) Parsing - LL(1) Transformations

10

A → A α | β A → β A’
A’→ α A’
 | ε

(for a single immediately left-recursive rule)

Arbitrary Strings

(nonterminal or terminal)
A

A’

A’

A’

β

𝛼

𝛼

𝛼 A’

𝜀

A

β

A

𝛼

A

𝛼

A

𝛼

Immediate Left Recursion Removal
(Predictive) Parsing - LL(1) Transformations

11

Exp ::= Exp – Factor

 | Factor

Factor ::= intlit | (Exp)

A → A α | β
A → β A’
A’→ α A’
 | ε

Exp

Factor

- FactorExp

A A
α

β

Immediate Left Recursion Removal
(Predictive) Parsing - LL(1) Transformations

12

Exp ::= Exp – Factor

 | Factor

Factor ::= intlit | (Exp)

A → A α | β
A → β A’
A’→ α A’
 | ε

Exp ::= Factor Exp’

Exp’ ::= - Factor Exp’

 | ε
Factor ::= intlit | (Exp)

Exp

Factor

- FactorExp

A A
α

β

Exp

Factor

Exp’

Exp’Exp’

- Factor

Immediate Left Recursion Removal
(Predictive) Parsing - LL(1) Transformations

13

A ::= β1
 | β2
 | βn
 | A α1
 | A α2
 | A αm

A ::= β1 A’
 | β2 A’
 | βn A’
A’ ::= α1 A’
 | α2 A’
 | αm A’
 | 𝜀

Given Productions Convert to

(general rule)

Left Factoring Grammar
(Predictive) Parsing - LL(1) Transformations

• If a nonterminal has (at least) two productions
whose RHS has a common prefix, the grammar is
not left factored

 (and not an LL(1) grammar)

14

Exp ::= (Exp)
 | { Exp }
 | ()
 | a b
 | b b

Question: What makes this grammar not left-factored?

Left Factoring: Simple Rule
(Predictive) Parsing - LL(1) Transformations

15

A → α A’
 A’ → β1 | β2

A → α β1 | α β2

Pull suffix into

a new nonterminal

Add a new rule

for suffixes

Given Productions Convert to

X ::= a b c d
X ::= a b e f

α β1

β2

X ::= a b X’
X’ ::= c d | e f

Attempt LL(1) Conversion
(Predictive) Parsing - LL(1) Transformations

16

Exp ::= (Exp)

 | Exp Exp

 | ()

Remove immediate left-recursion

A → A α | β
A → β A’
A’→ α A’
 | ε

becomes

Exp ::= (Exp) Exp’

 | () Exp'

Exp’ ::= Exp Exp’

 | ε

β1

β2

α1

A

A

A A’β1

β2 A’

A’ α1 A’

new ε

Attempt LL(1) Conversion
(Predictive) Parsing - LL(1) Transformations

17

Remove immediate left-recursion Left-factored

A → α A’
A’ → β1 | β2

A → α β1 | α β2
becomes

Exp ::= (Exp)

 | Exp Exp

 | ()

Exp ::= (Exp) Exp’

 | () Exp'

Exp’ ::= Exp Exp’

 | ε

A β1
α

β2
α

Exp ::= (Exp''
Exp′′ ::= Exp) Exp′
 |) Exp'
Exp′ ::= Exp Exp′
 | ε

A’α

A’

A

β1

β2

Attempt LL(1) Conversion
(Predictive) Parsing - LL(1) Transformations

18

Remove immediate left-recursion Left-factored

Exp ::= (Exp)

 | Exp Exp

 | ()

Exp ::= (Exp) Exp’

 | () Exp'

Exp’ ::= Exp Exp’

 | ε

Exp ::= (Exp''
Exp′′ ::= Exp) Exp′
 |) Exp'
Exp′ ::= Exp Exp′
 | ε

Current Status
(Predictive) Parsing - LL(1) Transformations

• We’ve removed 2 disqualifiers from LL(1)
• Left-recursive grammar

• Not Left-Factored grammar

19

Let’s Check on the Parse Tree
LL(1) Grammar Transformations

20

Exp

Exp - Factor

Exp - Factor

Factor

2

3

4

Exp → Exp – Factor

 | Factor

Factor → intlit | (Exp)

Exp → Factor Exp’

Exp’ → - Factor Exp’

 | ε
Factor → intlit | (Exp)

Exp

Factor Exp

2
- Factor Exp

- Factor Exp3

4 ε

Let’s Check on the Parse Tree
LL(1) Grammar Transformations

21

Exp → Factor Exp’

Exp’ → - Factor Exp’

 | ε
Factor → intlit | (Exp)

Exp

Factor Exp

2
- Factor Exp

- Factor Exp3

4 ε

Nevermind, We’ll Fix Parse Trees Later
LL(1) Grammar Transformations

22

¯_(ツ)_/¯

Today’s Outline
Lecture 9 – FIRST sets

Transforming Grammars

• Fixing LL(1) “near misses”

Building LL(1) Parsers

• Understanding LL(1) Selector Tables

• FIRST Sets

23

Parsing

Recall the LL(1) Parser’s Operation
Building LL(1)Selector Table

LL(1)

• Processes Left-to-right

• Leftmost derivation

• 1 token of lookahead

Predictive Parser: “guess & check”

• Starts at the root, guesses how to unfold a
nonterminal (derivation step)

• Checks that terminals match prediction

24

S

Xa

c

Lookahead: T2 (c)

S

Xa
Lookahead: T2 (c)

Recall the LL(1) Parser’s Operation
Building LL(1)Selector Table

25

Example LL(1) Grammar:
S ::= a X
X ::= b a | c

Example Input:
a c

T1 T2

S Lookahead: T1 (a)

S

Xa
Lookahead: T1 (a)

“guess”
S ֜ a X

“check” a
is in input

“guess”
X ֜ c

“check” c
Is in input

In practice,
table-driven parser

uses a stack to
match this tree

Parser state

S

Xa

c

Lookahead: T2 (c)

Live Assignments
P1
H2

How does the Parser Guess?
Building Parser Tables

The intuition is a bit tricky

• We need to get into the mindset of the parser

26

Pretend your consciousness has been transported inside an LL(1) parser

Live Assignments
P1
H2

Become the Parser
Building Parser Tables

27

You need to unfold a nonterminal X
with lookahead token t

Assume there’s an X production X ::= 𝜋1
𝜋2

(where 𝜋1 and 𝜋2 are some kind of symbol)

How do we know to guess this production?

S

Xa
Lookahead: T2 (t)

Y

Parse in Progress

…
 X ::= 𝜋1

𝜋2
…

Grammar Fragment

S

Xa Y

𝜋1 𝜋2

S

Xa Y

𝜋1 𝜋2
Z

Q f

t

t

Case 1: 𝜋1 subtree
may start with t

Z

Q f

t

Live Assignments
P1
H2

Become the Parser
Building Parser Tables

28

You need to unfold a nonterminal X
with lookahead token t

Assume there’s an X production X ::= 𝜋1
𝜋2

(where 𝜋1 and 𝜋2 are some kind of symbol)

How do we know to guess this production?

Case 2: 𝜋1 subtree may be
empty and 𝜋2 starts with t

S

Xa
Lookahead: T2 (t)

Y

…
 X ::= 𝜋1

𝜋2
…

Parse in Progress

Grammar Fragment

S

Xa Y

𝜋1 𝜋2

S

Xa Y

𝜋1 𝜋2
𝜀 t 𝜀

Case 1: 𝜋1 subtree
may start with t

Z

Q f

t

S

Xa Y

𝜋2
Z

Q

𝜋1

𝜀 𝜀

R

Live Assignments
P1
H2

Become the Parser
Building Parser Tables

29

You need to unfold a nonterminal X
with lookahead token t

Assume there’s an X production X ::= 𝜋1
𝜋2

(where 𝜋1 and 𝜋2 are some kind of symbol)

How do we know to guess this production?

Case 2: 𝜋1 subtree may be
empty and 𝜋2 starts with t

S

Xa
Lookahead: T2 (t)

Y

…
 X ::= 𝜋1

𝜋2
…

Parse in Progress

Grammar Fragment

S

Xa Y

𝜋1 𝜋2

S

Xa Y

𝜋1 𝜋2

𝜀 𝜀

Case 1: 𝜋1 subtree
may start with t

Z

Q

𝜀 𝜀

R

Case 3: both 𝜋1 and 𝜋2 may be
 empty and the sibling may

start with t

𝜀 t Z

Q f

t

Live Assignments
P1
H2

Become the Parser
Building Parser Tables

30

You need to unfold a nonterminal X
with lookahead token t

Assume there’s an X production X ::= 𝜋1
𝜋2

(where 𝜋1 and 𝜋2 are some kind of symbol)

How do we know to guess this production?

Case 2: 𝜋1 subtree may be
empty and 𝜋2 starts with t

S

Xa
Lookahead: T2 (t)

Y

…
 X ::= 𝜋1

𝜋2
…

Parse in Progress

Grammar Fragment

Case 1: 𝜋1 subtree
may start with t

Case 3: both 𝜋1 and 𝜋2 may be
 empty and the sibling may

start with t

How can we account for
these cases when
building the parser?

Live Assignments
P1
H2

Become the Parser
Building Parser Tables

31

You need to unfold a nonterminal X
with lookahead token t

Assume there’s an X production X ::= 𝜋1
𝜋2

(where 𝜋1 and 𝜋2 are some kind of symbol)

How do we know to guess this production?

Case 2: 𝜋1 subtree may be
empty and 𝜋2 starts with t

S

Xa
Lookahead: T2 (t)

Y

…
 X ::= 𝜋1

𝜋2
…

Parse in Progress

Grammar Fragment

Case 1: 𝜋1 subtree
may start with t

Case 3: both 𝜋1 and 𝜋2 may be
 empty and the sibling may

start with t

FIRST Sets FOLLOW Sets

Two sets are sufficient to capture these
cases and to build the selector table

Today’s Outline
Lecture 9 – FIRST sets

Transforming Grammars

• Fixing LL(1) “near misses”

Building LL(1) Parsers

• Reverse-Engineering Selector Tables

• FIRST Sets

32

Parsing

Live Assignments
P1
H2

An Informal Definition
Building LL(1) Selector Table: FIRST sets, single symbol

33

FIRST(α) = The set of terminals that begin strings derivable

 from α, and also, if α can derive ε, then ε is in FIRST(α).

Live Assignments
P1
H2

A Formal Definition
Building LL(1) Selector Table: FIRST sets, single symbol

34

FIRST(α) = The set of terminals that begin strings derivable
 from α, and also, if α can derive ε, then ε is in FIRST(X).

Formally, FIRST(α) =

 ො𝛼 ො𝛼 ∈ Σ ∧ α ֜
∗

ො𝛼β ∨ ො𝛼 = ε ∧ α ֜
∗

ε

Live Assignments
P1
H2

A Parse Tree Perspective
Building LL(1) Selector Table: FIRST sets, single symbol

35

A

eY

d eZ

kb

S

A

f

RZ G

f𝜀

S

A

b p

S

n e A

PT

𝜀 𝜀

S

What does the parse tree say about FIRST(A)?

FIRST(A)
includes

{ b }
Again, FIRST(A)

includes
{ b }

FIRST(A)
includes

{ g }

A

RZ M

g𝜀

S

𝜀

FIRST(A)
Includes

{ f }

FIRST(A)
includes

{ 𝜀 }

{ b, f, g, 𝜀 }If these were the only possible parse trees, then FIRST(A) =

FIRST(α) = The set of terminals that begin strings derivable
 from α, and also, if α can derive ε, then ε is in FIRST(X).

Live Assignments
P1
H2

A Parse Tree Perspective
Building LL(1) Selector Table: FIRST sets, single symbol

This isn’t how you build FIRST sets

• Looking at parse trees is illustrative for concepts only

• We need to derive FIRST sets directly from the
grammar

36

FIRST(α) = The set of terminals that begin strings derivable
 from α, and also, if α can derive ε, then ε is in FIRST(X).

Live Assignments
P1
H2

Building FIRST Sets: Methodology
Building Parser Tables

First sets exist for any arbitrary string of symbols α

• Defined in terms of FIRST sets for a single symbol
• FIRST of an alphabet terminal

• FIRST for ε

• FIRST for a nonterminal

• Use single-symbol FIRST to construct symbol-string FIRSTS

37

Rules for Single Symbols
Building Parser Tables

38

Building FIRST for terminals

FIRST(t) = { t } for t in Σ

FIRST(𝜀) = { 𝜀 }

Building FIRST(X) for nonterminal X

For each X ::= α1 α2 … αn

 C1: add FIRST(α1) - 𝜀

 C2: If 𝜀 could “prefix” FIRST(αk), add FIRST(αk)- 𝜀

 C3: If 𝜀 is in every FIRST set α1 … αn, add 𝜀

FIRST(X) = The set of terminals that begin strings derivable
 from X, and also, if X can derive ε, then ε is in FIRST(X).

Rules for Single Symbols
Building LL(1) Parsers

39

Building FIRST(X) for nonterminal X

For each X ::= α1 α2 … αn

 C1: add FIRST(α1) - 𝜀

 C2: If 𝜀 could “prefix” FIRST(αk), add FIRST(αk)- 𝜀

 C3: If 𝜀 is in every FIRST set α1 … αn, add 𝜀

Rules for Single Symbols
Building LL(1) Parsers

40

Building FIRST(X) for nonterminal X

For each X ::= α1 α2 … αn

 C1: add FIRST(α1) - 𝜀

 C2: If 𝜀 could “prefix” FIRST(αk), add FIRST(αk)- 𝜀

 C3: If 𝜀 is in every FIRST set α1 … αn, add 𝜀

Say there’s a production

X ::= Y Z R T

and we know

FIRST(Y) = { 𝜀, a }

FIRST(Z) = { 𝜀, b, m }

FIRST(R) = { c }

FIRST(T) = { d }

By C2 clause FIRST(X) includes b, m and c

b,m

c

because FIRST of every symbol before the 2nd includes 𝜀)

because FIRST of every symbol before the 3rd includes 𝜀)

Z in this case

R in this case

FIRST(X) does not add d in this clause
because not every FIRST set before the T
includes 𝜀

Building FIRST Sets for Symbol Strings
Building LL(1) Parsers

41

Building FIRST(α)

Let α be composed of symbols α1 α2 … αn

 C1: add FIRST(α1) - 𝜀

 C2: If α1 … αk-1 is nullable, add FIRST(αk)- 𝜀

 C3: If α1 … αn is nullable, add 𝜀

Base Cases:

αi is is a terminal t. Add t

αi is is a nonterminal X. Add every leaf symbol that could begin an X subtree
 (this gets a bit complicated due to dependencies)

Summary: Explored the LL(1) Mindset
FIRST Sets

LL(1) “Parseability” Qualification

• Knowing the leftmost terminal of a parse (sub)tree is
enough to pick the next derivation step

Elusive Conditions

• Two different rules could start with the same terminal (not
left factored)

• The same rule(s) could be applied repeatedly (left recursive)

Began choosing matching productions to input

• What terminal could the production be the start of (FIRST)?

42

	Slide 1: Check-in Review: Predictive Parsing
	Slide 2: Housekeeping Administrivia
	Slide 3: FIRST Sets
	Slide 4: Last Time Review – Predictive Parsing
	Slide 5: Where we Left Off Review – Predictive Parsing
	Slide 6: Today’s Outline Preview – FIRST Sets
	Slide 7: LL(1) Grammar Limitations Transforming Grammars – Fixing LL(1) Near Misses
	Slide 8: Checking if a Grammar is LL(1) Transforming Grammars – Fixing LL(1) Near Misses
	Slide 9: (Immediate) Left Recursion Transforming Grammars – Fixing LL(1) Near Misses
	Slide 10: Immediate Left Recursion Removal (Predictive) Parsing - LL(1) Transformations
	Slide 11: Immediate Left Recursion Removal (Predictive) Parsing - LL(1) Transformations
	Slide 12: Immediate Left Recursion Removal (Predictive) Parsing - LL(1) Transformations
	Slide 13: Immediate Left Recursion Removal (Predictive) Parsing - LL(1) Transformations
	Slide 14: Left Factoring Grammar (Predictive) Parsing - LL(1) Transformations
	Slide 15: Left Factoring: Simple Rule (Predictive) Parsing - LL(1) Transformations
	Slide 16: Attempt LL(1) Conversion (Predictive) Parsing - LL(1) Transformations
	Slide 17: Attempt LL(1) Conversion (Predictive) Parsing - LL(1) Transformations
	Slide 18: Attempt LL(1) Conversion (Predictive) Parsing - LL(1) Transformations
	Slide 19: Current Status (Predictive) Parsing - LL(1) Transformations
	Slide 20: Let’s Check on the Parse Tree LL(1) Grammar Transformations
	Slide 21: Let’s Check on the Parse Tree LL(1) Grammar Transformations
	Slide 22: Nevermind, We’ll Fix Parse Trees Later LL(1) Grammar Transformations
	Slide 23: Today’s Outline Lecture 9 – FIRST sets
	Slide 24: Recall the LL(1) Parser’s Operation Building LL(1)Selector Table
	Slide 25: Recall the LL(1) Parser’s Operation Building LL(1)Selector Table
	Slide 26: How does the Parser Guess? Building Parser Tables
	Slide 27: Become the Parser Building Parser Tables
	Slide 28: Become the Parser Building Parser Tables
	Slide 29: Become the Parser Building Parser Tables
	Slide 30: Become the Parser Building Parser Tables
	Slide 31: Become the Parser Building Parser Tables
	Slide 32: Today’s Outline Lecture 9 – FIRST sets
	Slide 33: An Informal Definition Building LL(1) Selector Table: FIRST sets, single symbol
	Slide 34: A Formal Definition Building LL(1) Selector Table: FIRST sets, single symbol
	Slide 35: A Parse Tree Perspective Building LL(1) Selector Table: FIRST sets, single symbol
	Slide 36: A Parse Tree Perspective Building LL(1) Selector Table: FIRST sets, single symbol
	Slide 37: Building FIRST Sets: Methodology Building Parser Tables
	Slide 38: Rules for Single Symbols Building Parser Tables
	Slide 39: Rules for Single Symbols Building LL(1) Parsers
	Slide 40: Rules for Single Symbols Building LL(1) Parsers
	Slide 41: Building FIRST Sets for Symbol Strings Building LL(1) Parsers
	Slide 42: Summary: Explored the LL(1) Mindset FIRST Sets

