

Draw the configuration of the parser after it processes the tokens ()

Projects
Pa du Wednesday

Trials

• Trial 1 due tonight

 380

University of Kansas | Drew Davidson

YJPH CONSTRUCTION

FIRST Sets

Intro to Parsing

• Complexity

A New Type of Language – LL(k)

- Intro
- LL(1) parsing

You Should Know

- What parsing is
- What LL(1) languages are
- How an LL(1) parser operates

The language might be LL(1) … even when the grammar is not!

Transforming Grammars

- Fixing LL(1) "near misses" **Building LL(1) Parsers**
- What the selector table needs
- FIRST Sets

LL(1) Grammar Limitations Transforming Grammars – Fixing LL(1) Near Misses

Given a language, we can't always find an LL(1) grammar *even if one exists*

• Best we can do: simple transformations that remove "obvious" disqualifiers

Checking if a Grammar is LL(1) Transforming Grammars – Fixing LL(1) Near Misses

If either of the following hold, the grammar is not LL(1):

- The grammar **is** left-recursive
- The grammar **isn't** left-factored

We can transform *some* **grammars while preserving the recognized language**

(Immediate) Left Recursion Transforming Grammars – Fixing LL(1) Near Misses

- Recall, a grammar such that $X \Rightarrow$ + X α is left recursive
- A grammar is immediately left recursive if this can happen in one step:

 $A \rightarrow A \alpha \mid \beta$

Immediate Left Recursion Removal *(Predictive) Parsing - LL(1) Transformations*

(for a single immediately left-recursive rule)

10

Immediate Left Recursion Removal *(Predictive) Parsing - LL(1) Transformations*

Immediate Left Recursion Removal

(Predictive) Parsing - LL(1) Transformations

Immediate Left Recursion Removal *(Predictive) Parsing - LL(1) Transformations*

(general rule)

• If a nonterminal has (at least) two productions whose RHS has a common prefix, the grammar is **not** left factored

(and **not** an LL(1) grammar)

Question: What makes this grammar not left-factored?

$$
Exp :: \{ (Exp) \}
$$

\n
$$
\begin{array}{c}\n | & \{ Exp \} \\
| & \{ \} \\
| & ab \\
| & bb\n \end{array}
$$

Left Factoring: Simple Rule *(Predictive) Parsing - LL(1) Transformations*

Attempt LL(1) Conversion *(Predictive) Parsing - LL(1) Transformations*

Remove immediate left-recursion

 $A \rightarrow A \alpha \mid \beta$

becomes

 $A \rightarrow \beta A'$ *A'*→ α *A'* | ε

Attempt LL(1) Conversion *(Predictive) Parsing - LL(1) Transformations*

Attempt LL(1) Conversion *(Predictive) Parsing - LL(1) Transformations*

Current Status *(Predictive) Parsing - LL(1) Transformations*

- We've removed 2 disqualifiers from LL(1)
	- Left-recursive grammar
	- **Not** Left-Factored grammar

Let's Check on the Parse Tree *LL(1) Grammar Transformations*

Let's Check on the Parse Tree *LL(1) Grammar Transformations*

Nevermind, We'll Fix Parse Trees Later *LL(1) Grammar Transformations*

¯_(ツ)_/¯

Transforming Grammars

• Fixing LL(1) "near misses"

Building LL(1) Parsers

- Understanding LL(1) Selector Tables
- FIRST Sets

Recall the LL(1) Parser's Operation *Building LL(1)Selector Table*

LL(1)

- Processes **L**eft-to-right
- **L**eftmost derivation
- **1** token of lookahead

Predictive Parser: "guess & check"

- Starts at the root, *guesses* how to unfold a nonterminal (derivation step)
- *Checks* that terminals match prediction

Recall the LL(1) Parser's Operation *Building LL(1)Selector Table*

25

ESS P How does the Parser Guess? *Building Parser Tables*

The intuition is a bit tricky

• We need to get into the mindset of the parser

Pretend your consciousness has been transported inside an LL(1) parser

You need to unfold a nonterminal *X* with lookahead token **t**

Assume there's an *X* production *X ::=* π_1 π_2 (where π_1 and π_2 are some kind of symbol)

How do we know to guess this production?

Case 1: π_1 subtree may start with **t**

You need to unfold a nonterminal *X* with lookahead token **t** Assume there's an *X* production *X ::=* π_1 π_2 (where π_1 and π_2 are some kind of symbol) How do we know to guess this production? Case 2: π_1 subtree may be empty and π_2 starts with **t** S **a** Lookahead: T₂ (**t**) Y … X ::= $\pi_1 \pi_2$ … **Parse in Progress Grammar Fragment** S **a** X Y $\pi_1 \leq \pi_2$ S **a** X Y $\pi_1 \rightarrow \pi_2$ Case 1: π_1 subtree may start with **t** Case 3: both $\pi^{}_1$ and $\pi^{}_2$ may be empty and the sibling may start with **t**

Z

 \mathcal{E} \mathcal{E}

R

Z

Q **f**

t

Q

 \mathcal{E} | \mathcal{E} | \mathbf{t} | \mathcal{E}

t

Two sets are sufficient to capture these cases and to build the selector table

Transforming Grammars

• Fixing LL(1) "near misses"

Building LL(1) Parsers

• Reverse-Engineering Selector Tables

• FIRST Sets

\bigcap An Informal Definition *Building LL(1) Selector Table: FIRST sets, single symbol*

 $FIRST(\alpha)$ = The set of terminals that begin strings derivable from α, and also, if α can derive ε, then ε is in FIRST(α).

A Formal Definition *Building LL(1) Selector Table: FIRST sets, single symbol*

 $FIRST(\alpha)$ = The set of terminals that begin strings derivable from α, and also, if α can derive ε, then ε is in FIRST(X).

Formally, FIRST(
$$
\alpha
$$
) =
\n
$$
\left\{\left.\hat{\alpha}\right|\left(\hat{\alpha} \in \Sigma \wedge \alpha \Rightarrow \hat{\alpha}\beta\right) \vee \left(\hat{\alpha} = \epsilon \wedge \alpha \Rightarrow \epsilon\right)\right\}
$$

\mathcal{U} e Assignments assignm A Parse Tree Perspective *Building LL(1) Selector Table: FIRST sets, single symbol*

$FIRST(\alpha)$ = The set of terminals that begin strings derivable from α, and also, if α can derive ε, then ε is in FIRST(X).

What does the parse tree say about FIRST(*A*)?

If these were the only possible parse trees, then $FIRST(A) = \{ b, f, g, \varepsilon \}$

\mathcal{U} e Assignments assignm A Parse Tree Perspective *Building LL(1) Selector Table: FIRST sets, single symbol*

 $FIRST(\alpha)$ = The set of terminals that begin strings derivable from α, and also, if α can derive ε, then ε is in FIRST(X).

This isn't how you build FIRST sets

- Looking at parse trees is illustrative for concepts only
- We need to derive FIRST sets directly from the grammar

ao logv Building FIRST Sets: Methodology *Building Parser Tables*

First sets exist for any arbitrary string of symbols α

- Defined in terms of FIRST sets for a single symbol
	- FIRST of an alphabet terminal
	- FIRST for ε
	- FIRST for a nonterminal
- Use single-symbol FIRST to construct symbol-string FIRSTS

Rules for Single Symbols *Building Parser Tables*

 $FIRST(X) = The set of terminals that begin strings derived.$

from X, and also, if X can derive ε , then ε is in FIRST(X).

Building FIRST for terminals

 $FIRST(t) = \{ t \}$ for **t** in Σ $FIRST(\varepsilon) = \{\varepsilon\}$

Building FIRST(*X***) for nonterminal** *X*

For each X ::= $\alpha_1 \alpha_2 ... \alpha_n$ C₁: add FIRST(α ₁) - ε C_2 : If ε could "prefix" FIRST($\alpha_{\rm k}$), add FIRST($\alpha_{\rm k}$)- ε C_3 : If ε is in every FIRST set $\alpha_1 \dots \alpha_n$, add ε

Rules for Single Symbols Building LL(1) Parsers

Building FIRST(*X***) for nonterminal** *X*

For each X ::= $\alpha_1 \alpha_2 ... \alpha_n$

C₁: add FIRST(α ₁) - ε

 C_2 : If ε could "prefix" FIRST($\alpha_{\rm k}$), add FIRST($\alpha_{\rm k}$)- ε

 C_3 : If ε is in every FIRST set α_1 ... α_n , add ε

Rules for Single Symbols Building LL(1) Parsers

Building FIRST(*X***) for nonterminal** *X*

For each X ::= $\alpha_1 \alpha_2 ... \alpha_n$ C₁: add FIRST(α ₁) - ε C_2 : If ε could "prefix" FIRST($\alpha_{\rm k}$), add FIRST($\alpha_{\rm k}$)- ε

 C_3 : If ε is in every FIRST set α_1 ... α_n , add ε

Building FIRST Sets for Symbol Strings Building LL(1) Parsers

Building FIRST(α**)**

Let α be composed of symbols $\alpha_1 \alpha_2 ... \alpha_n$

C₁: add FIRST(α ₁) - ε

C₂: If α_1 ... α_{k-1} is nullable, add FIRST(α_k)- ε

 C_3 : If $\alpha_1 \dots \alpha_n$ is nullable, add ε

Base Cases:

 α _i is is a terminal **t**. Add **t**

α_i is is a nonterminal *X*. Add every leaf symbol that could begin an *X* subtree **(this gets a bit complicated due to dependencies)**

Summary: Explored the LL(1) Mindset FIRST Sets

LL(1) "Parseability" Qualification

• Knowing the leftmost terminal of a parse (sub)tree is enough to pick the next derivation step

Elusive Conditions

- Two different rules could start with the same terminal (not left factored)
- The same rule(s) could be applied repeatedly (left recursive)

Began choosing matching productions to input

• What terminal could the production be the start of (FIRST)?