

Draw the configuration of the parser after it processes the tokens ()

Projects 12 du Wednesday

Trials

• Trial 1 due tonight

180

University of Kansas | Drew Davidson

CONSTRUCTION

FIRST Sets

Intro to Parsing

• Complexity

A New Type of Language – LL(k)

- Intro
- LL(1) parsing

You Should Know

- What parsing is
- What LL(1) languages are
- How an LL(1) parser operates

The language might be LL(1) ... even when the grammar is not!

Transforming Grammars

- Fixing LL(1) "near misses" Building LL(1) Parsers
- What the selector table needs
- FIRST Sets

LL(1) Grammar Limitations Transforming Grammars – Fixing LL(1) Near Misses

Given a language, we can't always find an LL(1) grammar *even if one exists*

 Best we can do: simple transformations that remove "obvious" disqualifiers

Checking if a Grammar is LL(1) Transforming Grammars – Fixing LL(1) Near Misses

If either of the following hold, the grammar is <u>not</u> LL(1):

- The grammar is left-recursive
- The grammar **isn't** left-factored

We can transform *some* grammars while preserving the recognized language

(Immediate) Left Recursion Transforming Grammars – Fixing LL(1) Near Misses

- Recall, a grammar such that $X \stackrel{+}{\Rightarrow} X \alpha$ is left recursive
- A grammar is immediately left recursive if this can happen in one step:

 $A \rightarrow A \alpha \mid \beta$

Immediate Left Recursion Removal (Predictive) Parsing - LL(1) Transformations

(for a single immediately left-recursive rule)

10

Immediate Left Recursion Removal (Predictive) Parsing - LL(1) Transformations

Immediate Left Recursion Removal

(Predictive) Parsing - LL(1) Transformations

Immediate Left Recursion Removal (Predictive) Parsing - LL(1) Transformations

(general rule)

 If a nonterminal has (at least) two productions whose RHS has a common prefix, the grammar is not left factored

(and **not** an LL(1) grammar)

Question: What makes this grammar not left-factored?

Left Factoring: Simple Rule (Predictive) Parsing - LL(1) Transformations

Attempt LL(1) Conversion (Predictive) Parsing - LL(1) Transformations

Remove immediate left-recursion

becomes

 $A \rightarrow A \alpha \mid \beta$

 $A \rightarrow \beta A'$ $A' \rightarrow \alpha A'$

Attempt LL(1) Conversion (Predictive) Parsing - LL(1) Transformations

Attempt LL(1) Conversion (Predictive) Parsing - LL(1) Transformations

Current Status (Predictive) Parsing - LL(1) Transformations

- We've removed 2 disqualifiers from LL(1)
 - Left-recursive grammar
 - Not Left-Factored grammar

Let's Check on the Parse Tree LL(1) Grammar Transformations

Let's Check on the Parse Tree LL(1) Grammar Transformations

Nevermind, We'll Fix Parse Trees Later

「_(`ン)_/

Transforming Grammars

• Fixing LL(1) "near misses"

Building LL(1) Parsers

- Understanding LL(1) Selector Tables
- FIRST Sets

Recall the LL(1) Parser's Operation Building LL(1) Selector Table

LL(1)

- Processes Left-to-right
- Leftmost derivation
- 1 token of lookahead

Predictive Parser: "guess & check"

- Starts at the root, *guesses* how to unfold a nonterminal (derivation step)
- Checks that terminals match prediction

Recall the LL(1) Parser's Operation Building LL(1)Selector Table

25

How does the Parser Guess? Building Parser Tables

The intuition is a bit tricky

• We need to get into the mindset of the parser

Pretend your consciousness has been transported inside an LL(1) parser

You need to unfold a nonterminal *X* with lookahead token **t**

Assume there's an X production X ::= $\pi_1 \pi_2$ (where π_1 and π_2 are some kind of symbol)

How do we know to guess this production?

Case 1: π_1 subtree may start with **t**

You need to unfold a nonterminal *X* with lookahead token **t**

Assume there's an X production X ::= $\pi_1 \pi_2$ (where π_1 and π_2 are some kind of symbol)

How do we know to guess this production?

Case 1: π_1 subtree may start with **t**

Case 2: π_1 subtree may be empty and π_2 starts with **t**

 $\mathsf{X} ::= \pi_1 \ \pi_2$

Case 3: both π_1 and π_2 may be empty and the sibling may start with **t**

Two sets are sufficient to capture these cases and to build the selector table

Transforming Grammars

Fixing LL(1) "near misses"

Building LL(1) Parsers

Reverse-Engineering Selector Tables

• FIRST Sets

An Informal Definition Building LL(1) Selector Table: FIRST sets, single symbol

FIRST(α) = The set of terminals that begin strings derivable from α , and also, if α can derive ε , then ε is in FIRST(α).

A Formal Definition Building LL(1) Selector Table: FIRST sets, single symbol

FIRST(α) = The set of terminals that begin strings derivable from α , and also, if α can derive ε , then ε is in FIRST(X).

Formally, FIRST(
$$\alpha$$
) =
 $\left\{ \hat{\alpha} \mid \left(\hat{\alpha} \in \Sigma \land \alpha \stackrel{*}{\Rightarrow} \hat{\alpha} \beta \right) \lor \left(\hat{\alpha} = \varepsilon \land \alpha \stackrel{*}{\Rightarrow} \varepsilon \right) \right\}$

A Parse Tree Perspective Building LL(1) Selector Table: FIRST sets, single symbol

FIRST(α) = The set of terminals that begin strings derivable from α , and also, if α can derive ε , then ε is in FIRST(X).

What does the parse tree say about FIRST(A)?

If these were the only possible parse trees, then $FIRST(A) = \{ \mathbf{b}, \mathbf{f}, \mathbf{g}, \varepsilon \}$

A Parse Tree Perspective Building LL(1) Selector Table: FIRST sets, single symbol

FIRST(α) = The set of terminals that begin strings derivable from α , and also, if α can derive ε , then ε is in FIRST(X).

This isn't how you build FIRST sets

- Looking at parse trees is illustrative for concepts only
- We need to derive FIRST sets directly from the grammar

Building FIRST Sets: Methodology Building Parser Tables

First sets exist for any arbitrary string of symbols $\boldsymbol{\alpha}$

- Defined in terms of FIRST sets for a single symbol
 - FIRST of an alphabet terminal
 - FIRST for $\boldsymbol{\epsilon}$
 - FIRST for a nonterminal
- Use single-symbol FIRST to construct symbol-string FIRSTS

Rules for Single Symbols Building Parser Tables

FIRST(X) = The set of terminals that begin strings derivable from X, and also, if X can derive ε , then ε is in FIRST(X).

Building FIRST for terminals

FIRST(\mathbf{t}) = { \mathbf{t} } for \mathbf{t} in Σ FIRST(ε) = { ε }

Building FIRST(X) for nonterminal X

For each X ::= $\alpha_1 \alpha_2 \dots \alpha_n$ C_1 : add FIRST(α_1) - ε C_2 : If ε could "prefix" FIRST(α_k), add FIRST(α_k)- ε C_3 : If ε is in every FIRST set $\alpha_1 \dots \alpha_n$, add ε

Rules for Single Symbols Building LL(1) Parsers

Building FIRST(X) for nonterminal X

For each X ::= $\alpha_1 \alpha_2 \dots \alpha_n$

 C_1 : add FIRST(α_1) - ε

C₂: If ε could "prefix" FIRST(α_k), add FIRST(α_k)- ε

C₃: If ε is in every FIRST set $\alpha_1 \dots \alpha_n$, add ε

Rules for Single Symbols Building LL(1) Parsers

Building FIRST(X) for nonterminal X

For each X ::= $\alpha_1 \alpha_2 \dots \alpha_n$ C_1 : add FIRST(α_1) - ε C_2 : If ε could "prefix" FIRST(α_k), add FIRST(α_k)- ε C_3 : If ε is in every FIRST set $\alpha_1 \dots \alpha_n$, add ε

Say there's a productionBy C_2 clause FIRST(X) includes **b**, **m** and **c**X ::= Y Z R T**b**, **m** because FIRST of every symbol before the 2nd includes ε)and we knowZ in this caseFIRST(Y) = { ε , **a** }**c** because FIRST of every symbol before the 3rd includes ε)FIRST(Z) = { ε , **b**, **m** }R in this caseFIRST(R) = { **c** }FIRST(X) does not add **d** in this clauseFIRST(T) = { **d** }includes ε

Building FIRST Sets for Symbol Strings Building LL(1) Parsers

<u>Building FIRST(</u>α)

Let α be composed of symbols $\alpha_1\,\alpha_2\,...\,\alpha_n$

 C_1 : add FIRST(α_1) - ε

C₂: If $\alpha_1 \dots \alpha_{k-1}$ is nullable, add FIRST(α_k)- ε

 C_3 : If $\alpha_1 \dots \alpha_n$ is nullable, add ε

Base Cases:

 $\boldsymbol{\alpha}_i$ is is a terminal $\boldsymbol{t}.$ Add \boldsymbol{t}

α_i is is a nonterminal X. Add every leaf symbol that could begin an X subtree (this gets a bit complicated due to dependencies)

Summary: Explored the LL(1) Mindset

LL(1) "Parseability" Qualification

• Knowing the leftmost terminal of a parse (sub)tree is enough to pick the next derivation step

Elusive Conditions

- Two different rules could start with the same terminal (not left factored)
- The same rule(s) could be applied repeatedly (left recursive)

Began choosing matching productions to input

• What terminal could the production be the start of (FIRST)?