
Announcements
Administrivia

1

• Quiz 3 and Quiz 4 to be returned on Wednesday

Partial Evaluation
2

Today’s Lecture
Partial Evaluation

3

Partial Evaluation

• What it is

• How to do it

• The Futamura projections

Advanced Topics

Partial Evaluation
Partial Evaluation - Background

4

Disclaimer: the fun-sized introduction to a complex topic

(https://compilers.cool/materials/JonesPartialEvaluation.pdf)

There are whole books on this technique!

https://compilers.cool/materials/JonesPartialEvaluation.pdf

Compiler Philosophy
About Partial Evaluation - Background

5

More static work means less
dynamic work

• Optimize programs to run
better

• Flag (potential) bugs before
they bite

“Fortune favors the prepared”
- Louis Pastuer

Compiler Philosophy - Consequence
About Partial Evaluation - Background

6

We can only optimize what we can prepare for

int a = atoi(argv[1]);

int y = atoi(argv[2]);

int x;

if (y < 3){

 x = (4 * (7 * (2 + (3 * a))));

} else {

 x = 1;

}

A tasty target for
optimization…

blocked by a pesky
dynamic value!

Partial Evaluation: Concept
Partial Evaluation

We often use the same value
for some of the arguments to
the program

• What if we could take those
values for granted?

• Specialize programs for
“guaranteed” inputs

7

bool cool(bool age, char * name){

 size_t len = strlen(name);

 if (isPrime(len)){

 return false;

 } else {

 return age < 30;

 }

}
cool(27, “Drew”) -> true
cool(28, “Drew”) -> true
cool(29, “Drew”) -> true
cool(30, “Drew”) -> false
cool(31, “Drew”) -> false
cool(32, “Drew”) -> false

How I run this program:

“Drew”

4

Partial Evaluation: “Specialization”
Partial Evaluation

Create special versions of a program

• Less general than the original program

• More efficient on what it does do

8

Dividing Input
Partial Evaluation: Concept

Split input into two groups

Some inputs constant, the rest dynamic

9

Input

Dynamic
Input

Static
Input

“This is Kinda Like Currying!”
Partial Evaluation: Concept

Yep, it is!

Haskell Curry, after whom
Currying and the Haskell
language are named

“This is Kinda Like Currying!”
Partial Evaluation: Concept

Yep, it is!

Some differences:

• PE not constrained to
function level

• PE can perform
arbitrary combinations
of arguments

Uncurried
function

Curried
function

𝑓 ∶ 𝑥, 𝑦 → 𝑧 𝑓 ∶ 𝑥 → (𝑦 → 𝑧)

int minus(int a, int b){

 a - b;

}

int minus(int b){

 5 - b;

}

minus

int minus(int a, int b){

 a - b

}

int minus(int a){

 a - 5;

}

minus

a as 5

b as 5

Today’s Lecture
Partial Evaluation

12

Partial Evaluation

• What it is

• How to do it

• The Futamura projections

Advanced Topics

Simplistic Implementation Intuition
Partial Evaluation - Technique

Analyze every program path

• If dynamic data can influence it, don’t alter the code

• If multiple values can touch it, account for all possibilities

• If value is static, replace with result (like constant folding)!

13

bool cool(bool age, char * name)

{

 size_t len = strlen(name);

 if (isPrime(len)){

 return false;

 } else {

 return age < 30;

 }

}

Dynamic
Static

“Drew”

“Drew”

bool cool_nameIsDrew(bool age)

{

 size_t len =

 if (isPrime(len)){

 } else {

 return age < 30;

 }

}

4 ;

4

Implementation – Dataflow Approach
Partial Evaluation - Technique

Propagate dynamic values

• Leave dynamic-dependent code alone

• Evaluate purely-static code paths

14

bool cool(bool age, char * name)

{

 size_t len = strlen(name);

 if (isPrime(len)){

 return false;

 } else {

 return age < 30;

 }

}

enter cool
getarg 1, [age]
getarg 2, [name]
setarg 1, [name]
call strlen

getret 1, [len]
setret 1, [len]
call isPrime

getout 1, [tmp1]
ifz [tmp1] goto L_1

setret 0

leave

[tmp2] := [age] < 30
setout [tmp2]

L_1:

jmp

jmp

L_2:

[name] := “Drew”

“Drew”

4

4

false

Partial Evaluation as Compiler Pass
Partial Evaluation - Technique

Could implement partial
evaluation as an optimization
module

• Recompile program with
your guaranteed values

15

Source
code

Static
Input

Middle end

Front end

Back end
Partial

Evaluation

Dynamic
Input Program

(e.g. prog.exe)
(e.g. age.exe)

(e.g. prog.c)
(e.g. name)

Specialized

Specializer

Partial Evaluation as Compiler Pass
Partial Evaluation - Technique

16

Source
code

Static
Input

Middle end

Front end

Back end

Partial
Evaluation

Dynamic
Input

Program
Specialized

Program

Turns generic
executable

into
specialized
executable

Specializer

The Specializer
Partial Evaluation - Technique

17

Source
code

Static
Input

Middle end

Front end

Back end

Partial
Evaluation

Dynamic
Input

Program
Specialized

Program

Turns generic
executable

into
specialized
executable

Let’s reorganize
these components

a bit…

Specializer

The Specializer
Partial Evaluation - Technique

18

Static
Input

Partial
Evaluation

Executable
Program

Specialized
Program

Dynamic
Input

Heavyweight
offline phase

Lightweight
offline phase

Specializer takes:
- An executable program
- A static input-subset
Specializer outputs:
- An executable

The Specializer: Example
Partial Evaluation - Technique

19

Assume we frequently need to know text statistics of War and Peace

The Specializer: Example
Partial Evaluation - Technique

20

Assume we frequently need to know text statistics of War and Peace

• How many lines of text?

• How many words?

• How many characters?

wc –l war_and_peace.txt

wc –w war_and_peace.txt

wc –c war_and_peace.txt

Assume we run these
commands a lot

wc –w war_and_peace.txt

wc –w war_and_peace.txt

wc –l war_and_peace.txt

options change text is static

The Specializer: Example
Partial Evaluation - Technique

21

Assume we frequently need to know text statistics of War and Peace

Specializer

Static
Input

Partial
Evaluation

Executable
Program

Specialized
Program

Dynamic
Input

Heavyweight
offline phase

Lightweight
online phase

wc war_and_peace.txt

wc_warAndPeaceoption (e.g. –l, -c, -w)

This program does
text counts only

on War and Peace

This program does
text counts on any

input file but
(presumably)

faster than the
generic wc

Specializer Optimization Targets
Partial Evaluation

22

• Pattern recognition

• Ray tracing of solid models

• Neural network training

• Database queries

• Spreadsheet computations

• Scientific computing

• Discrete hardware simulation

Other Uses of Specialization
Partial Evaluation – Futamura Projections

23

A (perhaps obvious) observation:

• Some programs take other programs as input

• What if we used specialization as part of the program transformation
process?

This observation leads to some startling results

Today’s Lecture
Partial Evaluation

24

Partial Evaluation

• What it is

• How to do it

• The Futamura projections

Advanced Topics

The Futamura Projections
Partial Evaluation – Futamura Projections

25

Baseline specialization
(not a Futamura Projection)

1st Futamura Projection

2nd Futamura Projection

3rd Futamura Projection

Baseline Specialization
Partial Evaluation – Futamura Projections

26

Specializer

Static
Input

Partial
Evaluation

Executable
Program

Specialized
Program

Heavyweight
offline phase

Lightweight
offline phase

wc war_and_peace.txt

wc_warAndPeace

Specialize a program on some of its input

1st Futamura Projection
Partial Evaluation – Futamura Projections

27

Specializer

Static
Input

Partial
Evaluation

Executable
Program

Specialized
Program

Heavyweight
offline phase

Lightweight
offline phase

interpreter Program source code

Executable
“compiled code”

Specialize an interpreter on program code

2nd Futamura Projection
Partial Evaluation – Futamura Projections

28

Specializer

Static
Input

Partial
Evaluation

Executable
Program

Specialized
Program

Heavyweight
offline phase

Lightweight
online phase

Specializer Interpreter

Compiler

Specialize the specializer on the interpreter code

3rd Futamura Projection
Partial Evaluation – Futamura Projections

29

Specializer

Static
Input

Partial
Evaluation

Executable
Program

Specialized
Program

Heavyweight
offline phase

Lightweight
online phase

Specializer Interpreter

Compiler-Compiler

Specialize the specializer on the interpreter code

The Futamura Projections
Partial Evaluation – Futamura Projections

30

Baseline specialization
(not a Futamura Projection)

1st Futamura Projection

2nd Futamura Projection

3rd Futamura Projection

Specialize interpreter on a program
Use specializer as a (slow) compiler

Specialize specializer on interpreter
Use specializer to (slowly) build a compiler

Specialize specializer on specializer
Use specializer to build a program that
builds compilers

The Futamura Projections
Partial Evaluation – Futamura Projections

31

Baseline specialization
(not a Futamura Projection)

1st Futamura Projection

2nd Futamura Projection

3rd Futamura Projection

Specialize interpreter on a program
Use specializer as a (slow) compiler

Specialize specializer on interpreter
Use specializer to (slowly) build a compiler

Specialize specializer on specializer
Use specializer to build a program that
builds compilers

Futamura Projections: WTF?
Partial Evaluation – Futamura Projections

Why would you do this?

• Reduces Effort
- Interpreters are nice! So are compilers!

- You want both, you can get both by just building interpreters

Is this real?

• Satisfying the definitions is easy

• Making good specialized programs is not

Another Frontier in Computer Science
Partial Evaluation – Futamura Projections

End of Lecture: Summary
Partial Evaluation – Futamura Projections

Summary

• Specialize program to enable optimization

• Treat some input as static, some as dynamic

• Powerful technique with ability to repurpose compiler components

Next Time: Beyond Compilers
Lecture Preview

• Using the tools and techniques that build compilers for things other
than building compilers

	Slide 1: Announcements Administrivia
	Slide 2: Partial Evaluation
	Slide 3: Today’s Lecture Partial Evaluation
	Slide 4: Partial Evaluation Partial Evaluation - Background
	Slide 5: Compiler Philosophy About Partial Evaluation - Background
	Slide 6: Compiler Philosophy - Consequence About Partial Evaluation - Background
	Slide 7: Partial Evaluation: Concept Partial Evaluation
	Slide 8: Partial Evaluation: “Specialization” Partial Evaluation
	Slide 9: Dividing Input Partial Evaluation: Concept
	Slide 10: “This is Kinda Like Currying!” Partial Evaluation: Concept
	Slide 11: “This is Kinda Like Currying!” Partial Evaluation: Concept
	Slide 12: Today’s Lecture Partial Evaluation
	Slide 13: Simplistic Implementation Intuition Partial Evaluation - Technique
	Slide 14: Implementation – Dataflow Approach Partial Evaluation - Technique
	Slide 15: Partial Evaluation as Compiler Pass Partial Evaluation - Technique
	Slide 16: Partial Evaluation as Compiler Pass Partial Evaluation - Technique
	Slide 17: The Specializer Partial Evaluation - Technique
	Slide 18: The Specializer Partial Evaluation - Technique
	Slide 19: The Specializer: Example Partial Evaluation - Technique
	Slide 20: The Specializer: Example Partial Evaluation - Technique
	Slide 21: The Specializer: Example Partial Evaluation - Technique
	Slide 22: Specializer Optimization Targets Partial Evaluation
	Slide 23: Other Uses of Specialization Partial Evaluation – Futamura Projections
	Slide 24: Today’s Lecture Partial Evaluation
	Slide 25: The Futamura Projections Partial Evaluation – Futamura Projections
	Slide 26: Baseline Specialization Partial Evaluation – Futamura Projections
	Slide 27: 1st Futamura Projection Partial Evaluation – Futamura Projections
	Slide 28: 2nd Futamura Projection Partial Evaluation – Futamura Projections
	Slide 29: 3rd Futamura Projection Partial Evaluation – Futamura Projections
	Slide 30: The Futamura Projections Partial Evaluation – Futamura Projections
	Slide 31: The Futamura Projections Partial Evaluation – Futamura Projections
	Slide 32: Futamura Projections: WTF? Partial Evaluation – Futamura Projections
	Slide 33: Another Frontier in Computer Science Partial Evaluation – Futamura Projections
	Slide 34: End of Lecture: Summary Partial Evaluation – Futamura Projections
	Slide 35: Next Time: Beyond Compilers Lecture Preview

