Check-In

Review: Abstract Interpretation
Draw the CFG for the following 3AC procedure. Indicate the IN and OUT sets for each basic block on a, b, c for a constant propagation analysis

Assume c is global and all other vars are local

```
fun foo: enter foo
    L1: getarg 1 [a]
    L2: [b] := 2
    L3: [c] := 2
    L4: [tmp0] := [a] LT64 3
    L5: IFZ [tmp0] GOTO L11
    L6: [tmp1] := [b] ADD64 7
    L7: [b] := [tmp1]
    L8: call bar
    L9: [tmp3] := [c] ADD64 7
    L10: [c] := [tmp3]
    L11: setret [b]
    L12: leave foo
```


Announcements

Administrivia

- Quiz 4 Friday
- Review Session Wednesday, 7:15-9:15 (I'll try to show up at 7:00)

SSA

Rounding out dataflow analysis concepts

- Some more examples
- Considering more complex code
- Dataflow Framework

Abstract Interpretation

- Concepts
- Examples

You should know

- The saturation approach to dataflow
- Handling loops, globals, large domains

Optimization

Today's Lecture Outline
 SSA

Static Single Assignment

- Motivation
- Concept
- Importance
- Implementation

Optimization

Recall Data Allocation
 SSA - Motivation

Simplistic Interference Graph:

- Nodes are "variables"
- Edges indicate interference

2-colorable

```
1. [A] := 1
2. [B] := 2
3. output [B]
4. [C] := 3
5. output [A]
6. [D] := 4
7. output [D]
8. output [C]
```

A live: $(1,5]$
B live: $(2,3]$
C live: $(4,8]$
D live: $(6,7]$

Recall Data Allocation
 SSA - Motivation

3-colorable

```
1. [A] := 1
2. [B] := 2
3. output [B]
4. [C] := 3
5. output [A]
6. [B] := 4
7. output [B]
8. output [C]
```

A live: $(1,5]$
B live: $(2,3]$ and $(6,7]$
C live: $(4,8]$

Breaking out B into more variables uses fewer resources!
2-colorable

1. [A] := 1
2. [B] $:=2$
3. output [B]
4. [C] := 3
5. output [A]
6. [D] $:=4$
7. output [D]
8. output [C]

A live: $(1,5]$
B live: $(2,3$]
C live: $(4,8]$
D live: (6, 7]

The Static Single Assignment Concept SSA

An additional restriction on the IR:

$$
\begin{aligned}
& a:=1 \\
& b:=a \\
& c:=a+b
\end{aligned}
$$

- Every variable is assigned a value in at most one program point

$$
\begin{aligned}
& \mathrm{a}:=1 \\
& \mathrm{~b}:=\mathrm{a} \\
& \mathrm{a}:=\mathrm{b} * 2 \\
& \mathrm{c}:=\mathrm{a}+\mathrm{b}
\end{aligned}
$$

We can say 3AC is (or isn't) in SSA form

Why does that matter?
Disentangles value use
Simplifies other analyses
L1: b:= 7
Ok! statically defined only goto L1
once (doesn't matter that it's
dynamically assigned > 1)

Transformation to SSA Form

Basic Idea

- Break noncompliant variables into multiple "versions"
- Preserve semantics!

Obvious within a BBL

- Each definition rewritten to a new variable version

Before	After
(not SSA form)	(is SSA form)
[a] := 1	[a_{1}] : $=1$
[b] := [a]	[b] := [$\left.\mathrm{a}_{1}\right]$
[a] := [b]*2	[$\left.\mathrm{a}_{2}\right]:=[\mathrm{b}]^{*} 2$
[c] : $=$ [a] + [b]	[c] : $=\left[\mathrm{a}_{2}\right]+[\mathrm{b}]$

quick note on notation:
Ok to leave off the subscript
if there's only one "version"

- Each use rewritten to the most recently defined variable version

Transformation to SSA Form

Non-Obvious between BBLs

- Don't know (statically) the most recently defined variable version

```
    [v] := 1
    ifz [g] goto L1
    [a] := [x] + [y]
    goto L2
L1: [a] := [b] + 2
    [v] := [y] + 1
L2: [a] := [v] + [a]
```


\$ Functions - Notational Placeholders SSA - ϕ Functions

Encapsulated the uncertainty of which version to use

$$
a_{4}:=\phi\left(a_{1}, a_{2}, a_{3}\right)
$$

means that a_{4} will hold whichever version of a was defined most recently
ϕ Functions $\underset{\substack{\text { ss }- \text { - } p \text { Functions }}}{\text { Res }}$ "Conflicts"

Example Time - Transform to SSA Form

 SSA - ϕ Functions```
int foo(int a, int b){
 while(b < 4){
 a += 1;
 if (a * 2 == 4){
 b = 7;
 }
 }
 return a;
}
```

| B1 | $\begin{aligned} \text { fn_foo: } & \text { enter foo } \\ & \text { getarg 1, [a] } \\ & \text { getarg 2, [b] } \end{aligned}$ |
| :---: | :---: |
| B2 | lbl_1:[tmp1] : $=$ [b] LT64 4  <br>  ifz [tmp1] goto lbl_2 |
| B3 | ```[a] = [a] ADD64 1 [tmp2] := [a] MULT64 2 [tmp3] := [tmp2] EQ64 4 ifz [tmp3] goto lbl 3``` |
| B4 | [b] : $=7$ |
| B5 | $\begin{array}{ll} \text { lbl_3: } & \text { nop } \\ & \text { goto lbl_1 } \end{array}$ |
| B6 | $\begin{aligned} \text { l.bl_2: } & \text { nop } \\ & \text { setret [a] } \\ & \text { goto lv_foo } \end{aligned}$ |
| B7 | lv_foo: leave foo |

## Example Time - Transform to SSA Form SSA - $\phi$ Functions

 SSA - $\phi$ Functions

## Why rely on a function we cannot compute?

We can remove the $\phi$ s later

- Easy solution: make sure that all arguments to the $\phi$ share a common memory location


Rolls back our sub-variable resource goals

- Consider a naïve algorithm to place $\phi$ s:
- Place $\phi$ for every defined version of the variable


## What Points Actually Require $\phi$ ?

One sufficient condition for Avoiding $\boldsymbol{\phi}$ nodes:
(wlog, assume Block A defines x and Block B uses x)

- Block B has an unambiquous variable definition if vou're guaranteed to go through block $A$ on any path to $B$

There's a name for this constraint...



## Domination Examples <br> SSA - Placing $\phi$ s

Block $X$ dominates block $Y$ if all paths to $Y$ must pass through $X$
Examples (what does A dominate?)
A dominates $\mathrm{A}, \mathrm{D}, \mathrm{C}, \mathrm{B}$
A dominates A and C only


## Domination Vocabulary <br> SSA - Placing $\phi$ s

## Control-Flow Graph

X DOM $\mathbf{Y}-X$ dominates $Y$

- All paths to $Y$ go through $X$
- (Reflexive - X DOM X)

X SDOM Y-X strictly dominates Y

- Non-reflexive domination
- Formally: X DOM Y and X != $Y$

X IDOM Y - X immediately dominates Y

- "Closest" strict dominator
- Formally: X SDOM Y and Z SDOM Y $\Rightarrow \mathrm{Z}=\mathrm{X}$



## What Good is Domination? <br> SSA - Placing $\phi$ s

Provides guarantees about execution (sorta-kinda like a looser version of statements being in the same basic block)

- A given block can rely on statements in a dominator to always have happened before the block is executed
- Similarly, a given block cannot rely on statements in non-dominators to always have happened before the block is executed

The boundary has interesting properties for SSA

Wdetour: Using $\underset{\mathrm{s} s \lambda-\text { Phing } \phi_{s}}{\text { Dominators for } \phi s}$


## Dominator Frontier of X :

The set of nodes $\mathrm{k}_{\mathrm{i}}$
that X does not strictly dominate,
but $X$ dominates an immediate predecessor of $\mathrm{k}_{\mathrm{i}}$

Dominator Frontier of X:
The set of nodes $\mathrm{k}_{\mathrm{i}}$
! X SDOM $\mathrm{k}_{\mathrm{i}}$
$X$ DOM $Y$ and $Y$ IPRED $k_{i}$

| BBL | PRED | DOM | SDOM | DF |
| :--- | :--- | :--- | :--- | :--- |
| B1 | B2 | (all) | B2,B3,B4,B5,B6,B7 | $\}$ |
| B2 | B3, B6 | B2,B3,B4,B5,B6,B7 | B3,B4,B5,B6,B7 |  |
| B3 | B4,B5 | B3, B4,B5 | B4,B5 |  |
| B4 | B5 | B4 | $\}$ |  |
| B5 | B2 | B5 | $\}$ |  |
| B6 | B7 | $B 6, B 7$ | $B 7$ |  |
| $B 7$ | $\}$ | $B 7$ | $\}$ |  |

# Example Time - Compute Dom Frontier SSA - $\phi$ Functions 

B1 What does B 1 dominate? B1 B2 B3 B4 B5 B6 B7 What do these precede? $\quad B 2 \quad B 3 \quad B 6 \quad B 4 \quad B 5 \quad B 2 \quad B 7$
Disqualify if B1 SDOMs


Dominator Frontier of X :
The set of nodes $\mathrm{k}_{\mathrm{i}}$
! X SDOM $\mathrm{k}_{\mathrm{i}}$
$X$ DOM $Y$ and $Y$ IPRED $k_{i}$
B3 What does B3 dominate? B3 B4 B5
What do these precede? B4 B5 B/ B2
Disqualify if B3 SDOMs


The set of nodes $\mathrm{k}_{\mathrm{i}}$
! X SDOM $\mathrm{k}_{\mathrm{i}}$
$X$ DOM $Y$ and $Y$ IPRED $k_{i}$
B3 What does B3 dominate? B3 B4 B5
What do these precede? B4 B5 B/ B2
Disqualify if B3 SDOMs
B4 What does B4 dominate? B4
What do these precede? B5
Disqualify if B4 SDOMs
B5 What does B5 dominate? B5
What do these precede? B2
Disqualify if B5 SDOMs


B1 What does B1 dominate? B1 B2 B3 B4 B5 B6 B7
What do these precede? $\quad B 2$ B3 B6 B4 B5 B2 B7
Disqualify if B1 SDOMs
B2 What does B2 dominate? B2 B3 B4 B5 B6 B7
What do these precede? B3 B6 B4 B5 B5 B2 B7
Disqualify if B2 SDOMs
B3 What does B3 dominate? B3 B4 B5
What do these precede? B4 B5 B5 B2
Disqualify if B3 SDOMs
B4 What does B4 dominate? B4
What do these precede? B5
Disqualify if B4 SDOMs
B7 What does B7 dominate? B7
What do these precede? \{\}

B5 What does B5 dominate? B5
What do these precede? B2
Disqualify if B5 SDOMs
B6 What does B6 dominate? B6 B7
What do these precede? B7
Disqualify if B6 SDOMs


```
```

for v in vars:

```
```

for v in vars:
for d in DefBBLs[v]:
for d in DefBBLs[v]:
for block in DF[d]:
for block in DF[d]:
Add a \phi-node to block,
Add a \phi-node to block,
unless we have done so already.
unless we have done so already.
Add block to DefBBLs[v]
Add block to DefBBLs[v]
unless it's already in there.

```
```

        unless it's already in there.
    ```
```

Dominator Frontie
The set of nodes $\mathrm{k}_{\mathrm{i}}$
SSA - $\phi$ Functions
! X SDOM $\mathrm{k}_{\mathrm{i}}$
$X$ DOM $Y$ and $Y$ IPRED $k_{i}$

# Example Time - Compute Dom Frontier 


for $v$ in vars:
for $d$ in DefBBLs[v]: for block in $D F[d]:$ Add a $\phi$-node to block, unless we have done so already. Add block to DefBBLs[v]
unless it's already in there.

var	DefBBLs	( Blocks
a	B1 B3 B2	B2
b	B1 B4 B5 B2	B5 B2


BBL	IPRED	DOM	SDOM	DF
B1	B2	(all)	B2,B3,B4,B5,B6,B7	\{\}
B2	B3, B6	B3,B4,B5,B6,B7	B3,B4,B5,B6,B7	B2
B3	B4,B5	B3, B4,B5	B4,B5	B2
B4	B5	B4	$\}$	$B 5$
B5	B2	B5	$\}$	$B 2$
B6	B7	$B 6, B 7$	$B 7$	$\}$
B7	$\}$	$B 7$	$\}$	$\}$

## End Detour: Using Dominators for $\phi s$

 SSA - Placing $\phi$ s
## END DETOUR

## Dominance: Summary SSA - Placing $\phi$ s

## Summary:

- Dominators can be computed efficiently
- Dominance can be used to aid in efficient SSA
- SSA aids in efficient program optimization and future analysis



## Oh Hey, We Built a Compiler!

Underview



## Practical Applications

Why does this class matter?

- "So you can do compilers": Practical skills for language implementation / reasoning
- "What you do with compilers is useful outside doing compilers"

