
Check-In
Review: Abstract Interpretation

1

Draw the CFG for the following 3AC procedure. Indicate the IN and OUT sets for each basic block on
a, b, c for a constant propagation analysis

fun_foo: enter foo

 L1: getarg 1 [a]

 L2: [b] := 2

 L3: [c] := 2

 L4: [tmp0] := [a] LT64 3

 L5: IFZ [tmp0] GOTO L11

 L6: [tmp1] := [b] ADD64 7

 L7: [b] := [tmp1]

 L8: call bar

 L9: [tmp3] := [c] ADD64 7

 L10: [c] := [tmp3]

 L11: setret [b]

 L12: leave foo

Assume c is global and all other vars are local

Announcements
Administrivia

• Quiz 4 Friday

• Review Session Wednesday, 7:15 – 9:15 (I’ll try to show up at 7:00)

2

SSA

Drew Davidson | University of Kansas

3

Previously…
Abstract Interpretation

Rounding out dataflow analysis concepts

• Some more examples

• Considering more complex code

• Dataflow Framework

Abstract Interpretation

• Concepts

• Examples

4

You should know
• The saturation approach to dataflow
• Handling loops, globals, large domains Optimization

Today’s Lecture Outline
SSA

Static Single Assignment

• Motivation

• Concept

• Importance

• Implementation

5

Optimization

Recall Data Allocation
SSA – Motivation

Simplistic Interference Graph:

• Nodes are “variables”

• Edges indicate interference

6

1. [A] := 1

2. [B] := 2

3. output [B]

4. [C] := 3

5. output [A]

6. [D] := 4

7. output [D]

8. output [C]

A B

C D

A live: (1, 5]
B live: (2, 3]
C live: (4, 8]
D live: (6, 7]

A B

C D

2-colorable

Recall Data Allocation
SSA – Motivation

7

1. [A] := 1

2. [B] := 2

3. output [B]

4. [C] := 3

5. output [A]

6. [B] := 4

7. output [B]

8. output [C]

A B

C

A live: (1, 5]
B live: (2, 3] and (6,7]
C live: (4, 8]

1. [A] := 1

2. [B] := 2

3. output [B]

4. [C] := 3

5. output [A]

6. [D] := 4

7. output [D]

8. output [C]

A B

C D

A live: (1, 5]
B live: (2, 3]
C live: (4, 8]
D live: (6, 7]

A B

C D

A B

C

2-colorable

3-colorable

Breaking out B into more variables uses fewer resources!

The Static Single Assignment Concept
SSA

An additional restriction on
the IR:

• Every variable is assigned a
value in at most one
program point

We can say 3AC is (or isn’t)
in SSA form

8

a := 1

b := a

c := a + b

a := 1

b := a

c := a + b

a := b * 2

L1: b := 7

goto L1Ok! statically defined only
once (doesn’t matter that it’s
dynamically assigned > 1)

Why does that matter?

Disentangles value use

Simplifies other analyses

Transformation to SSA Form
SSA

Basic Idea

• Break noncompliant
variables into multiple
“versions”

• Preserve semantics!

Obvious within a BBL

• Each definition rewritten
to a new variable version

• Each use rewritten to the
most recently defined
variable version

11

[_a_] := 1

[_b_] := [_a_]

[_c_] := [_a_] + [_b_]

[_a_] := [_b_] * 2

[_a_] := 1

[_b_] := [_a_]

[_c_] := [_a_] + [_b_]

[_a_] := [_b_] * 2

quick note on notation:
Ok to leave off the subscript
if there’s only one “version”

Before After
(not SSA form) (is SSA form)

1

2

1

2

Transformation to SSA Form
SSA

Non-Obvious between BBLs

• Don’t know (statically) the
most recently defined
variable version

12

[v] := 1

 ifz [g] goto L1

 [a] := [x] + [y]

 goto L2

L1: [a] := [b] + 2

 [v] := [y] + 1

L2: [a] := [v] + [a]

[v] := 1

ifz [g] goto L1

[a] := [x] + [y]

goto L2

L1: [a] := [b] + 2

 [v] := [y] + 1

L2: [a] := [v] + [a]]

jmp

jmp

1

1

2

2

??3

𝜙 Functions – Notational Placeholders
SSA – ϕ Functions

Encapsulated the uncertainty of which version to use

13

a := 𝜙(a , a , a) 4 1 2 3

means that a4 will hold whichever version of a was
defined most recently

𝜙 Functions – Resolving “Conflicts”
SSA – ϕ Functions

14

[v] := 1

ifz [g] goto L1

[a]:= [x] + [y]

goto L2

L1: [a] := [b] + 2

 [v] := [y] + 1

L2:

 [a] := [v] + [a]
]

jmp

jmp

1

1

2

2

??3

a := 𝜙(a , a)
1 23

v := 𝜙(v , v)
1 23

3 34

Example Time – Transform to SSA Form
SSA – ϕ Functions

15

int foo(int a, int b){

 while(b < 4){

 a += 1;

 if (a * 2 == 4){

 b = 7;

 }

 }

 return a;

}

fn_foo: enter foo

 getarg 1, [a]

 getarg 2, [b]

lbl_1: [tmp1] := [b] LT64 4

 ifz [tmp1] goto lbl_2

[a] = [a] ADD64 1

 [tmp2] := [a] MULT64 2

 [tmp3] := [tmp2] EQ64 4

 ifz [tmp3] goto lbl_3

[b] := 7

lbl_3: nop

 goto lbl_1

lbl_2: nop

 setret [a]

 goto lv_foo

lv_foo: leave foo

B1

B2

B3

B4

B5

B6

B7

Example Time – Transform to SSA Form
SSA – ϕ Functions

16

fn_foo: enter foo

 getarg 1, [a]

 getarg 2, [b]

lbl_1: [tmp1] := [b] LT64 4

 ifz [tmp1] goto lbl_2

[a] = [a] ADD64 1

 [tmp2] := [a] MULT64 2

 [tmp3] := [tmp2] EQ64 4

 ifz [tmp3] goto lbl_3

[b] := 7

lbl_3: nop

 goto lbl_1

lbl_2: nop

 setret [a]

 goto lv_foo

lv_foo: leave foo

jmp

jmp

jmp

int foo(int a, int b){

 while(b < 4){

 a += 1;

 if (a * 2 == 4){

 b = 7;

 }

 }

 return a;

}

B1

B2

B3

B4

B5

B6

B7

1

1

3

2

2

3

Insert
b3:= ϕ(b1,b2)

Insert
a3:= ϕ(a1,a2)

2

Insert
a4:= ϕ(a1,a2)

𝜙 Functions – A “Magical” Placeholder
SSA – ϕ Functions

Why rely on a function we
cannot compute?

We can remove the 𝜙s later

• Easy solution: make sure that
all arguments to the 𝜙 share a
common memory location

17

Image Credit: Avyst e-forms wizarda3 := 𝜙(a1, a2)

-24(%rbp)

-24(%rbp)

𝜙 Functions are Costly!
SSA – Placing ϕs

Rolls back our sub-variable resource goals

• Consider a naïve algorithm to place 𝜙s:
• Place 𝜙 for every defined version of the variable

18

What Points Actually Require 𝜙?
SSA – Placing ϕs

One sufficient condition for Avoiding 𝜙 nodes:

(wlog, assume Block A defines x and Block B uses x)

• Block B has an unambiguous variable definition if you’re
guaranteed to go through block A on any path to B

19

L5: ???
 [b] := [a?]

L1: [a1] := 7
 goto L3

L3: [a2] := 9
 goto L5

L5: ???
 [b] := [a?]

L1: [a1] := 7
 ifz [g] goto L5

L3: [a2] := 9
 goto L5

Possible CFG Snippet 1 Possible CFG Snippet 2

nop (no 𝜙) a3 = 𝜙 (a1,a2)

There’s a name for this constraint…

jmp

2 3

20

Domination Examples
SSA – Placing ϕs

21

A

B

C D

E

A dominates A, D, C, B A dominates A and C only

Block X dominates block Y if all paths to Y must pass through X

A

B

C D

E

jmp

Examples (what does A dominate?)

Domination Vocabulary
SSA – Placing ϕs

X DOM Y – X dominates Y

• All paths to Y go through X

• (Reflexive - X DOM X)

X SDOM Y – X strictly dominates Y

• Non-reflexive domination

• Formally: X DOM Y and X != Y

X IDOM Y – X immediately dominates Y

• “Closest” strict dominator

• Formally: X SDOM Y and Z SDOM Y ⇒ Z = X

22

C

F

D E

B

A

G

A

B

C

D

F

E G

Control-Flow Graph Dominator Tree

What Good is Domination?
SSA – Placing ϕs

23

Provides guarantees about execution (sorta-kinda like a looser
version of statements being in the same basic block)

• A given block can rely on statements in a dominator to always have
happened before the block is executed

• Similarly, a given block cannot rely on statements in non-dominators
to always have happened before the block is executed

The boundary has interesting properties for SSA

Wdetour: Using Dominators for ϕs
SSA – Placing ϕs

24

Domination Vocabulary
SSA – Placing ϕs

Dominator Frontier of X:

The set of nodes ki

 that X does not strictly dominate,

 but X dominates an immediate
predecessor of ki

25

C

F

D E

B

A

G

Example Time – Compute Dom Frontier
SSA – ϕ Functions

26

BBL IPRED DOM SDOM DF
B1 B2 (all) B2,B3,B4,B5,B6,B7

B2 B3, B6 B2,B3,B4,B5,B6,B7 B3,B4,B5,B6,B7

B3 B4,B5 B3, B4,B5 B4,B5

B4 B5 B4 {}

B5 B2 B5 {}

B6 B7 B6,B7 B7

B7 {} B7 {}

B6

B2

B1

B3

B4

B5

B7

Dominator Frontier of X:
The set of nodes ki
 ! X SDOM ki

 X DOM Y and Y IPRED ki

B1 What does B1 dominate? B2 B3 B4 B5 B6 B7B1
What do these precede? B3 B6 B4 B5 B2 B7B2

Disqualify if B1 SDOMs

{}

Example Time – Compute Dom Frontier
SSA – ϕ Functions

27

BBL IPRED DOM SDOM DF
B1 B2 (all) B2,B3,B4,B5,B6,B7

B2 B3, B6 B2,B3,B4,B5,B6,B7 B3,B4,B5,B6,B7

B3 B4,B5 B3, B4,B5 B4,B5

B4 B5 B4 {}

B5 B2 B5 {}

B6 B7 B6,B7 B7

B7 {} B7 {}

B6

B2

B1

B3

B4

B5

B7

Dominator Frontier of X:
The set of nodes ki
 ! X SDOM ki

 X DOM Y and Y IPRED ki

B2 What does B2 dominate? B2 B3 B4 B5 B6 B7
What do these precede? B3 B6 B4 B5 B2 B7

Disqualify if B2 SDOMs

B5

B1 What does B1 dominate? B2 B3 B4 B5 B6 B7B1
What do these precede? B3 B6 B4 B5 B2 B7B2

Disqualify if B1 SDOMs

B3 What does B3 dominate? B3 B4 B5
What do these precede? B4 B5 B2
Disqualify if B3 SDOMs

B5

{}

B2

B2

BBL IPRED DOM SDOM DF
B1 B2 (all) B2,B3,B4,B5,B6,B7

B2 B3, B6 B2,B3,B4,B5,B6,B7 B3,B4,B5,B6,B7

B3 B4,B5 B3, B4,B5 B4,B5

B4 B5 B4 {}

B5 B2 B5 {}

B6 B7 B6,B7 B7

B7 {} B7 {}

Example Time – Compute Dom Frontier
SSA – ϕ Functions

28

B6

B2

B1

B3

B4

B5

B7

Dominator Frontier of X:
The set of nodes ki
 ! X SDOM ki

 X DOM Y and Y IPRED ki

B2 What does B2 dominate? B2 B3 B4 B5 B6 B7
What do these precede? B3 B6 B4 B5 B2 B7

Disqualify if B2 SDOMs

B5

B1 What does B1 dominate? B2 B3 B4 B5 B6 B7B1
What do these precede? B3 B6 B4 B5 B2 B7B2

Disqualify if B1 SDOMs

B3 What does B3 dominate? B3 B4 B5
What do these precede? B4 B5 B2
Disqualify if B3 SDOMs

B5

{}

B2

B2 B5 What does B5 dominate? B5
What do these precede? B2
Disqualify if B5 SDOMs

B4 What does B4 dominate? B4

What do these precede? B5
Disqualify if B4 SDOMs

B5

B2

BBL IPRED DOM SDOM DF
B1 B2 (all) B2,B3,B4,B5,B6,B7

B2 B3, B6 B2,B3,B4,B5,B6,B7 B3,B4,B5,B6,B7

B3 B4,B5 B3, B4,B5 B4,B5

B4 B5 B4 {}

B5 B2 B5 {}

B6 B7 B6,B7 B7

B7 {} B7 {}

Example Time – Compute Dom Frontier
SSA – ϕ Functions

29

B6

B2

B1

B3

B4

B5

B7

Dominator Frontier of X:
The set of nodes ki
 ! X SDOM ki

 X DOM Y and Y IPRED ki

B2 What does B2 dominate? B2 B3 B4 B5 B6 B7
What do these precede? B3 B6 B4 B5 B2 B7

Disqualify if B2 SDOMs

B5

B1 What does B1 dominate? B2 B3 B4 B5 B6 B7B1
What do these precede? B3 B6 B4 B5 B2 B7B2

Disqualify if B1 SDOMs

B3 What does B3 dominate? B3 B4 B5
What do these precede? B4 B5 B2
Disqualify if B3 SDOMs

B5

{}

B2

B2 B5 What does B5 dominate? B5
What do these precede? B2
Disqualify if B5 SDOMs

B4 What does B4 dominate? B4

What do these precede? B5
Disqualify if B4 SDOMs

B6 What does B6 dominate? B6 B7
What do these precede? B7
Disqualify if B6 SDOMs

B7 What does B7 dominate? B7

What do these precede? {}

B5

B2

{}

{}

BBL IPRED DOM SDOM DF
B1 B2 (all) B2,B3,B4,B5,B6,B7

B2 B3, B6 B2,B3,B4,B5,B6,B7 B3,B4,B5,B6,B7

B3 B4,B5 B3, B4,B5 B4,B5

B4 B5 B4 {}

B5 B2 B5 {}

B6 B7 B6,B7 B7

B7 {} B7 {}

Example Time – Compute Dom Frontier
SSA – ϕ Functions

30

B6

B2

B1

B3

B4

B5

B7

Dominator Frontier of X:
The set of nodes ki
 ! X SDOM ki

 X DOM Y and Y IPRED ki

{}

B2

B2

B5

B2

{}

{}

for v in vars:

 for d in DefBBLs[v]:

 for block in DF[d]:

 Add a ϕ-node to block,

 unless we have done so already.

 Add block to DefBBLs[v]

 unless it's already in there.

Example Time – Compute Dom Frontier
SSA – ϕ Functions

31

fn_foo: enter foo

 getarg 1, [a]

 getarg 2, [b]

lbl_1: [tmp1] := [b] LT64 4

 ifz [tmp1] goto lbl_2

[a] = [a] ADD64 1

 [tmp2] := [a] MULT64 2

 [tmp3] := [tmp2] EQ64 4

 ifz [tmp3] goto lbl_3

[b] := 7

lbl_3: nop

 goto lbl_1

lbl_2: nop

 setret [a]

 goto lv_foo

lv_foo: leave foo

jmp

jmp

B1

B2

B3

B4

B5

B6

B7

1

1

3

2

2

3

2

for v in vars:

 for d in DefBBLs[v]:

 for block in DF[d]:

 Add a ϕ-node to block,

 unless we have done so already.

 Add block to DefBBLs[v]

 unless it's already in there.

BBL IPRED DOM SDOM DF
B1 B2 (all) B2,B3,B4,B5,B6,B7

B2 B3, B6 B3,B4,B5,B6,B7 B3,B4,B5,B6,B7

B3 B4,B5 B3, B4,B5 B4,B5

B4 B5 B4 {}

B5 B2 B5 {}

B6 B7 B6,B7 B7

B7 {} B7 {}

{}

B2

B2

B5

B2

{}

{}

a3 = ϕ(a1,a2)
b3 = ϕ(b1,b4)

b4 = ϕ(b3,b2)

3

var DefBBLs Φ Blocks

a

b

B2B1 B3

B1 B4 B5 B2

B2

B5 B2

End Detour: Using Dominators for ϕs
SSA – Placing ϕs

32

Dominance: Summary
SSA – Placing ϕs

Summary:

• Dominators can be computed efficiently

• Dominance can be used to aid in efficient SSA

• SSA aids in efficient program optimization and
future analysis

33

Oh Hey, We Built a Compiler!
Underview

34

Intermediate code
optimization

Target code

Source code

Lexical
 analysis

Syntactic
analysis

Semantic analysis

Intermediate code
generation

Final code
generation

Final code
optimization

35

COMPILER

Regular
Languages

Syntactic
Definition

Lexical
Analysis

Parsing
Syntax-Dir
Translation

Optimization

Semantic
Analysis

Machine
Codegen

Intermediate
Representation

Code
Generation

What Next?
Underview

36

Practical Applications

Why does this class matter?

• “So you can do compilers”: Practical skills for
language implementation / reasoning

• “What you do with compilers is useful outside doing
compilers”

	Slide 1: Check-In Review: Abstract Interpretation
	Slide 2: Announcements Administrivia
	Slide 3: SSA
	Slide 4: Previously… Abstract Interpretation
	Slide 5: Today’s Lecture Outline SSA
	Slide 6: Recall Data Allocation SSA – Motivation
	Slide 7: Recall Data Allocation SSA – Motivation
	Slide 8: The Static Single Assignment Concept SSA
	Slide 11: Transformation to SSA Form SSA
	Slide 12: Transformation to SSA Form SSA
	Slide 13: phi Functions – Notational Placeholders SSA – ϕ Functions
	Slide 14: phi Functions – Resolving “Conflicts” SSA – ϕ Functions
	Slide 15: Example Time – Transform to SSA Form SSA – ϕ Functions
	Slide 16: Example Time – Transform to SSA Form SSA – ϕ Functions
	Slide 17: phi Functions – A “Magical” Placeholder SSA – ϕ Functions
	Slide 18: phi Functions are Costly! SSA – Placing ϕs
	Slide 19: What Points Actually Require 𝜙? SSA – Placing ϕs
	Slide 20
	Slide 21: Domination Examples SSA – Placing ϕs
	Slide 22: Domination Vocabulary SSA – Placing ϕs
	Slide 23: What Good is Domination? SSA – Placing ϕs
	Slide 24: Wdetour: Using Dominators for ϕs SSA – Placing ϕs
	Slide 25: Domination Vocabulary SSA – Placing ϕs
	Slide 26: Example Time – Compute Dom Frontier SSA – ϕ Functions
	Slide 27: Example Time – Compute Dom Frontier SSA – ϕ Functions
	Slide 28: Example Time – Compute Dom Frontier SSA – ϕ Functions
	Slide 29: Example Time – Compute Dom Frontier SSA – ϕ Functions
	Slide 30: Example Time – Compute Dom Frontier SSA – ϕ Functions
	Slide 31: Example Time – Compute Dom Frontier SSA – ϕ Functions
	Slide 32: End Detour: Using Dominators for ϕs SSA – Placing ϕs
	Slide 33: Dominance: Summary SSA – Placing ϕs
	Slide 34: Oh Hey, We Built a Compiler! Underview
	Slide 35
	Slide 36: What Next? Underview

