Check-In

Review: Abstract Interpretation

Draw the CFG for the following 3AC procedure. Indicate the IN and OUT sets for each basic block on
a, b, c for a constant propagation analysis

Assume c is global and all other vars are local

fun foo: enter foo
Ll: getarg 1 [a]
L2: [b] := 2
L3: [c] := 2
L4: [tmpO] := [a] LT64 3
L5: IFZ [tmpO] GOTO L11
L6: [tmpl] := [b] ADD64 7
L7: [b] := [tmpl]
L8: call bar
L9: [tmp3] := [c] ADD64 7
L10: [c] := [tmp3]
L11: setret [b]

L12: leave foo

Announcements

Administrivia

* Quiz 4 Friday
* Review Session Wednesday, 7:15 —9:15 (I’ll try to show up at 7:00)

" Drew Davidson | University of Kansas

OV H" l !ﬁr-— &

L'IIIIS

uCTION

Previously...

Abstract Interpretation

Rounding out dataflow analysis concepts
e Some more examples

e Considering more complex code
e Dataflow Framework

Abstract Interpretation

e Concepts

e Examples
4)

You should know
* The saturation approach to dataflow

* Handling loops, globals, large domains

.)

Today’s Lecture Outline

SSA

Static Single Assighment
* Motivation

* Concept

* Importance

* Implementation

Recall Data Allocation

SSA — Motivation

Simplistic Interference Graph:
* Nodes are “variables”
* Edges indicate interference

/ 2-colorable

n @
2. [B] := 2

3. output [B] A live: (1, 5]

4. [C] =3 B live: (2, 3]

5. output [A] .

6. [D] := 4 Clive: (4, 8]

2 outpur (D] D live: (6, 7] e

8. output [C]

Recall Data Allocation

SSA — Motivation

/

/ 3-colorable \
1. [A] := 1
2. [B] : 2 i ° e
3. output [B] A live: (1, 5]
4. [Cl == 3 B live: (2, 3] and (6,7]
5. output [A] .o
6. (Bl :- 4 C live: (4, 8]
7. output [B]
8. output [C]
/ 2-colorable
1. [A] := 1
2. [B] := 2 .
3. output [B] A live: (1, 5]
4. [C] =3 B live: (2, 3]
5. output [A] e
6 (D] - 4 Cll.ve. (4, 8]
7 output (0] D live: (6, 7] e a
8. output [C]

The Static Single Ajgsﬁnm@nt Concept

a:=1
An additional restriction on b a .,
* Every variable is assigned a
value in at most one a=1
program point b:=a x
. . =p*
We can say 3AC is (or isn’t) =
. C:=a+
in SSA form
Why does that matter? ’
. L1: b:=7
Disentangles value use
goto L1

Simplifies other analyses

Transformation to SSA Form

SSA
Basic Idea
: Before After
* Break noncompliant (not SSA form) (is SSA form)
variables into multiple [a]:=1 [a,]:=1
“versions” (b]:=[a] » [b]:=[a]
. [a]l:=[b]*2 [a,]:=[b]*2
* Preserve semantics!
[cl:=[a]+[b] [cl:=[a,]+[b]
Obvious within a BBL
e Each definition rewritten quick note on notation:
)) Ok to leave off the subscript
to a new variable version if there’s only one “version”

e Each use rewritten to the
most recently defined
variable version

Transformation to SSA Form

SSA

Non-Obvious between BBLs

* Don’t know (statically) the
most recently defined
variable version

[Vl]

=1

ifz [g] goto Ll

/

(v] := 1 [a,] :=[x] + [y] jmp
1fz [g] goto L1 goto L2
[a] = [x] + [y]
goto L2
Ll: [a] = [b] + 2 . Ll: [a2] = [b] +2
[v] = [yl + 1 i (Vo] i=[y] +1
L2: [a] := [v] + [a]

12

Functions — Notational Placeholders

SSA — ¢ Functions

Encapsulated the uncertainty of which version to use

agi= ¢(a1, &5 g)

means that a, will hold whichever version of a was
defined most recently

Functions — Resolving “Conflicts”

SSA — ¢ Functions

[a]:= [x] + [y] jmp
goto L2
Ll: [a2] = [b] +2
jmp
[vol == [yl +1
L2: a3:= ¢(a11 32)

14

Example Time — Transform to SSA Form

SSA — ¢ Functions

int foo(int a, int b) { B1 fn foo: enter foo
while(b < 4) { getarg 1, [a]
a += 1: getarg 2, [b]
if (a * 2 == 4){ B2| 1bl 1: thpl] := [b] LT64 4
L= 7. ifz [tmpl] goto 1lbl 2
\ ' B3 [a] - [a] ADD64 1
[tmp2] := [a] MULT64 2
) [tmp3] := [tmp2] EQ64 4
return a; ifz [tmp3] goto 1bl 3
} B4 [b] := 7
B5| 1bl 3: nop
goto 1bl 1
B6| lbl 2: nop
setret [a]
goto 1lv foo
B7| lv _foo: leave foo

Example Time — Transform to SSA Form

SSA — ¢ Functions

Bl

int foo(int a, int Db) { fn foo: enter foo

while (b < 4) { getarg 1, [a]

a += l’ getarg 2, [b] b3::¢(b1/b2)
] * ey
it (a * 2 A B2[1bl 1: [tmpl] := [b] LT64 4
b ="717; ifz [tmpl] goto 1lbl 2 as:= ¢ (a, a,)
} _
}
return ay; B3| [a] = [a] ADD64 1
} jmp [tmp2] := [a] MULT64 2
[tmp3] := [tmp2] EQ64 4
ifz [tmp3] goto 1lbl 3

B5| 1bl 3: nop
goto 1bl 1

—

B6| lbl 2: nop
setret [a]

goto 1lv foo a,:= ¢(ay,a,)

B7

lv _foo: leave foo

Functions — A “Magical” Placeholder

SSA — ¢ Functions

Why rely on a function we
cannot compute?

IT'S NOT

We can remove the ¢s later

e Easy solution: make sure that
all arguments to the ¢ share a
common memory location

a; = ¢p(a,, a,) Image Credit: Avyst e-forms wizard

17

Functions are Costly!

SSA — Placing ¢s

Rolls back our sub-variable resource goals

* Consider a naive algorithm to place ¢s:
* Place ¢ for every defined version of the variable

What Points Actually Require ¢?

SSA — Placing ¢s

One sufficient condition for Avoiding ¢ nodes:
(wlog, assume Block A defines x and Block B uses x)

* Block B has an unambiquous variable definition if you're
guaranteed to go through block A on any path to B

Possible CFG Snippet 1 Possible CFG Snippet 2
| |
L1: [a,] :=7 L1: [a,] :=7
goto L3 ifz [g] goto L5
— i
4
L3: [a,] :=9 ' L3: [a,] :=9
goto L5 mp goto L5
/ R
L5: nop (no &) L5: a; = ¢ (a,,a,)
[b] := [a'ﬂ 2 [b] := [aﬂ 3

Domination Examples

SSA — Placing ¢s

Block X dominates block Y if all paths to Y must pass through X

Examples (what does A dominate?)

A dominates A, D, C, B A dominates A and C only
E E
. jmp
A A

C D C D

\/ \/

21

Domination Vocabulary

SSA — Placing ¢s

Control-Flow Graph Dominator Tree
XDOMY - X dominates Y A
e All paths to Y go through X -
* (Reflexive - X DOM X) ; 5
X SDOM Y - X strictly dominates Y | C
* Non-reflexive domination ¢ /N
* Formally: XDOM Y and X I1=Y ; [;/\‘E D E G
XIDOMY - X immediately dominates Y ! / -
o " ot : F

Closest” strict dominator -

* Formally: XSDOM Y andZSDOMY = Z=X G

What Good is Domination?

SSA — Placing ¢s

Provides guarantees about execution (sorta-kinda like a looser
version of statements being in the same basic block)

* A given block can rely on statements in a dominator to always have
happened before the block is executed

e Similarly, a given block cannot rely on statements in non-dominators
to always have happened before the block is executed

Wdetour: Using Dominators for ¢s

SSA — Placing ¢s

24

Domination Vocabulary

SSA — Placing ¢s

Dominator Frontier of X: A

The set of nodes k.

that X does not strictly dominate,

but X dominates an immediate c
predecessor of k. _—

25

Example Time — Compute Dom Frontier

Bf SSA — ¢ Functions
B2 |«
Bl What does B1 dominate? B1 B2 B3 B4 B5 B6 B7
B3 What do these precede? BZ B3 B6 B4 B5 7 B7
Disqualify if B1 SDOMs
B4 Dominator Frontier of X:
The set of nodes k.
=2 | X SDOM k.
% X DOM Y and Y IPRED k,
7
m-m-m-a-
- (all) B2,B3,B4,B5,B6,B7
B2 B3,B6 B2,B3,B4,B5,B6,B7 B3,B4,B5,B6,87
B3 B4,B5 B3, B4,B5 B4,B5
B4 B5 B4 {
B5 B2 B5 {}
B6 B7 B6,B7 B7

B7 {} B7 {}

26

Example Time — Compute Dom Frontie

Bf SSA — ¢ Functions
B2 |«
B1 What does B1 dominate? B1 B2 B3 B4 B5 B6 B7
B3 What do these precede? B2 B3 B6 B4B5 7 B7
Disqualify if B1 SDOMs
i _?:emsl:ta(t_)?zzrdo;t';r of X: B2 What does B2 dominate? B2 B3 B4 B5 B6 B7
" I X SDOM k | What d9 these precede? B3 B6 B4 B5 ~ B2 B7
! X DOM Y and Y IPRED k Disqualify if B2 SDOMs
B6 B3 What does B3 dominate? B3B4 B5
- What do these precede? B4 B5 -~ B2
Disqualify if B3 SDOMs
m-m-m-a-
- (all) B2,B3,B4,B5,B6,B7
B2 B3,B6 B2,B3,B4,B5,86,87 B3,B4,B5,86,87 BZ
B3 B4,B5 B3,B4,B5 B4,B5 B2
B4 B5 B4 {
B5 B2 B5 {
B6 B7 B6,B7 B7

B7 {} B7 {}

27

Example Time — Compute Dom Frontie

B1
T SSA — ¢ Functions
B2 |«
B1 What does B1 dominate? B1 B2 B3 B4 B5 B6 B7
B3 What do these precede? B2 B3 B6 B4B5 7 B7
Disqualify if B1 SDOMs
B4 i i :
_I?:mmtat(;r Frdontlker of X: B2 What does B2 dominate? B2 B3 B4 B5 B6 B7
o leXSSeD(C;MmI: €K What do these precede? B3 B6 B4 B5 -~ B2 B7
. i . e
| X DOM Y and Y IPRED k Disqualify if B2 SDOMs
B6 B3 What does B3 dominate? B3 B4 B5
> What do these precede? B4 B5 -~ B2

Disqualify if B3 SDOMs

-m-m-m-i- B4 What does B4 dominate? B4

(all) B2,B3,B4,B5,B6,B7 What do these precede? ps
B2 B3,B6 B2,B3,B4,B5,86,87 B3,B4,B5,86,B7 BZ Disqualify if B4 SDOMs
Bl) BES B4,B5 B2 B5 What does B5 dominate? B5
B4 BS B4 {} B5 What do these precede? B>
B5 B2 BS {} B2 Disqualify if BS SDOMs

B6 B7 B6,B7 B7

B7 {} B7 {}

28

Example Time — Compute Dom Frontie

B1
T SSA — ¢ Functions
B2 |«
B1 What does B1 dominate? B1 B2 B3 B4 B5 B6 B7
B3 What do these precede? B2 B3 B6 B4B5 7 B7
Disqualify if B1 SDOMs
B4 i i :
_I?:mmtat(;r Frdontlker of X: B2 What does B2 dominate? B2 B3 B4 B5 B6 B7
o leXSSeDngI: €K What do these precede? B3 B6 B4 B5 -~ B2 B7
. i : e
| X DOM Y and Y IPRED k Disqualify if B2 SDOMs
B6 B3 What does B3 dominate? B3 B4 B5
- What do these precede? B4 B5 -~ B2

Disqualify if B3 SDOMs

-m-m-m-i- B4 What does B4 dominate? B4

(all) B2,83,B4,B5,B6,B7 What do these precede? g B7 What does B7 dominate? B7
B2 B3,B6 B2,B3,B4,B5,B6,87 B3,B4,B5,86,87 BZ Disqualify if B4 SDOMs What do these precede? {}
B3 B4,B5 B3,B4,B5 B4,B5
B2 B5 What does B5 dominate? B5
B4 BS B4 { B5 What do these precede? B2
B5 B2 B5 {} B2 Disqualify if B5 SDOMs
RS ek = {} B6 What does B6 dominate? B6 B7

B7 {} B7 {} 0 What do these precede? B7
Disqualify if B6 SDOMs 29

Example Time — Compute Dom Frontie

B1
T SSA — ¢ Functions
B2 |« for v in vars:
for d in DefBBLs|[V]:
B3 for block in DF[d]:
Add a ¢—-node to block,
B4 D . F . £ X: unless we have done so already.
ominator Frontier ot X: Add block to DefBBLs [v]
The set of nodes k. unless it's already in there.
=2 | X SDOM k;
y X DOM Y and Y IPRED k,
B6
\ 4
B7
(all) B2,B3,B4,B5,86,B7

B2 B3,B6 B2,B3,B4,B5,86,B7 B3,B4,B5,B6,B7 BZ

B3 B4,B5 B3, B4,B5 B4,B5 B2

B4 B5 B4 {} B5

B5 B2 B5 {} B2

B6 B7 B6,B7 B7 {}

B7 {} B7 {} {3

30

Example Time — Compute Dom Frontie

SSA — ¢ Functions

for v in wvars:

Bl fn foo: enter foo for d in DefBBLs([v]:
getarg 1, [a4] for block in DF[d]:
getarg 2, [Db] a;=@(aa,) Add a ¢-node to block,
by =¢(by,b,) unless we have done so already.
B2[1bl 1: [tmpl] := [b] LT64 4 Add block to DefBBLs|[V]

3
ifz [tmpl] goto 1lbl 2

unless it's already in there.

\ar | Defaals | 0'lovks

B3 [az] = [a3] ADDo4 1 a B1 B3 B2 B2
jmp [tmp2] := [a,] MULT64 2
[tmp3] := [tmp2] EQ64 4 b B1 B4 B5 B2 B5 B2
ifz [tmp3] goto 1lbl 3

b, = by b,) Bl B2 (all) B2,B3,B4,B5,86,B7 }
B2 B3,B6 B3,B4,B5,B6,87 B3,B4,B5,B6,87 B2
BS| bl 3: nop B3 B4,B5 B3,B4,BS B4,B5 B2
goto 1bl 1
— B4 B5 B4 {} B5
B6| 1bl 2: nop B5 B2 B5 {} B2
setret [as] B6 B7 B6,B7 B7 0
goto 1lv foo
4 B7 {} B7 {} 0}
B7| 1v_foo: leave foo 31

End Detour: Using Dominators for ¢s

SSA — Placing ¢s

Dominance: Summary

SSA — Placing ¢s

Summary:
* Dominators can be computed efficiently
* Dominance can be used to aid in efficient SSA

* SSA aids in efficient program optimization and
future analysis

A
E“M

Oh Hey, We Built a Compiler!

Underview

Source code

v
e : D
Lexical
L analysis)
v
e : D
Syntactic
analysi
L ysis)
v
e D
Semantic analysis
k J
v
Intermediate code
generation
v

Intermediate code
optimization

_J
v
X)
Final code
generation)
v
_ N
Final code
optimization)

v

Target code

L Y Y Y Y W W N

34

WAL LS P, /‘_\4\ i ol
) = COMPILER | [(L1070

ATLE N MDA e
AOU 00 Toun

Semantic
Analysis

[

Syntactic
Definition

& 6
(Regular

m Languages

."-4’, ('/' f)
v' "2 r’/

Lexical
Analysis
W’

u-.;'\’;).‘\" :

_—
<

What Next?

Underview

Practical Applications
Why does this class matter?

* “So you can do compilers”: Practical skills for
language implementation / reasoning

* “What you do with compilers is useful outside doing
compilers”

	Slide 1: Check-In Review: Abstract Interpretation
	Slide 2: Announcements Administrivia
	Slide 3: SSA
	Slide 4: Previously… Abstract Interpretation
	Slide 5: Today’s Lecture Outline SSA
	Slide 6: Recall Data Allocation SSA – Motivation
	Slide 7: Recall Data Allocation SSA – Motivation
	Slide 8: The Static Single Assignment Concept SSA
	Slide 11: Transformation to SSA Form SSA
	Slide 12: Transformation to SSA Form SSA
	Slide 13: phi Functions – Notational Placeholders SSA – ϕ Functions
	Slide 14: phi Functions – Resolving “Conflicts” SSA – ϕ Functions
	Slide 15: Example Time – Transform to SSA Form SSA – ϕ Functions
	Slide 16: Example Time – Transform to SSA Form SSA – ϕ Functions
	Slide 17: phi Functions – A “Magical” Placeholder SSA – ϕ Functions
	Slide 18: phi Functions are Costly! SSA – Placing ϕs
	Slide 19: What Points Actually Require 𝜙? SSA – Placing ϕs
	Slide 20
	Slide 21: Domination Examples SSA – Placing ϕs
	Slide 22: Domination Vocabulary SSA – Placing ϕs
	Slide 23: What Good is Domination? SSA – Placing ϕs
	Slide 24: Wdetour: Using Dominators for ϕs SSA – Placing ϕs
	Slide 25: Domination Vocabulary SSA – Placing ϕs
	Slide 26: Example Time – Compute Dom Frontier SSA – ϕ Functions
	Slide 27: Example Time – Compute Dom Frontier SSA – ϕ Functions
	Slide 28: Example Time – Compute Dom Frontier SSA – ϕ Functions
	Slide 29: Example Time – Compute Dom Frontier SSA – ϕ Functions
	Slide 30: Example Time – Compute Dom Frontier SSA – ϕ Functions
	Slide 31: Example Time – Compute Dom Frontier SSA – ϕ Functions
	Slide 32: End Detour: Using Dominators for ϕs SSA – Placing ϕs
	Slide 33: Dominance: Summary SSA – Placing ϕs
	Slide 34: Oh Hey, We Built a Compiler! Underview
	Slide 35
	Slide 36: What Next? Underview

