Check-in

Review: Dataflow

Give an example of a forward dataflow analysis and an example of a
backward dataflow analysis.



Announcements

Review: Dataflow



| " Drew Davidson | University of Kansas

- .
< -
- s =
-
-
» .
- - e -
' - - . . ~
gt - pr . :
~ -
. -
d .-
» . - - . -
. -
- o ;
.
- - - .
° -
-
/
E
..

ll-'

MM H v H"’ ! r'— SN f
CONSTH cmm

B

Abstract Interpretation

’*'4\




Previously...

Review: Dataflow

Global Dataflow analysis
* Intuition
* Operations

~

/ You should know
* The basic concepts of dataflow facts
- Backwards and Forward analysis
- Augment local analysis with “IN” and “OUT” sets
- You need to merge fact sets

\_ /

Optimization



jmp

Merg

o

ing

Fact Sets

Dataflow Intuition

( ® a: b
L1: enter
° a: b
L2: getarg 1, [a]
L a , b:
L3: getarg 2, [b]
° a: , b:
L4: ifz [a] goto L7
\ ° a: , b:
1
® a , b:
L5: [b]:=4 * [a]
o a , b:
® a , b:
—|L8: OUTPUT [b]
® a , b:
L9: leave
I a , b:

Fact sets may be different when multiple
successors/predecessors join

* Need to merge incoming fact sets

Merge as conservatively as possible

* Don’t do anything without a guarantee!

* Plan for all possible flows

Example: is L3 live? (consider both block paths)

* L3 definition clobbered on the fallthrough
branch (at L5)

* L3 definition not clobbered on the jump branch



Today’s Outline

IR Optimization

Rounding out dataflow analysis concepts
* Some more examples

* Considering more complex code

e Dataflow Framework

Abstract Interpretation

* Concepts

* Examples

Optimization



Refresh Constant/Copy Propagation

Dataflow: Formalization

Copy Propagation

x:=1 x:=1
* Replace RHS of simple assigns B -
with value of assign (if known) y=X » Y=
* Forward analysis Z:=X+ty z:=1+1
X:=3 X:=3

Constant folding

* Replace constant RHS
expressions with value
* Traversal order isn’t important




Example Analyses

Dataflow: Formalization

Dead Code Elimination Constant Propagation

* Backwards analysis * Forward analysis

e Fact sets: the liveness of e Fact sets: the known value of
each variable each variable

{<value>, <value2}, ...

* Merge: * Merge:
U _ Set Union
Uiy = {1ju{12}={12}
U = ...except

(*}u =



Example Constant Propagation

Dataflow: Formalization - Example

[t

0
1] goto B2 }

{2} | {0}

Bl:
What values can x take on at B6? [v]
[ifz
B2[ x|y |z B2:
IN {0} [ ,[X]
ouT|{2}| {0} s
B4 :
jmp [ [x] := [y] }
B5| x |y]| z
IN [{0,2}{{0}
ouT| {0} [{0}

{0}

{0}

{0}

{0}

{0}

{0}

{0}

{0}

{0}




Today’s Outline

IR Optimization

Rounding out dataflow analysis concepts
* Some more examples

* Considering more complex code

* Instantiating Dataflow Framework
Abstract Interpretation

* Concepts

* Examples

Optimization

10



Handling Practical Programs

Global Dataflow: Formalization

Global variables
* We only have visibility into 1 procedure

* Be conservative about the effect of other
procedures
* Reset fact sets across a call
e Consider global variables live at function end



Analysis Termination

Dataflow: Formalization

In the previous examples, we
completed in one pass over the

CFG

* This won’t always be the case,
due to a fundamental construct...

12



Analysis Termination

Dataflow: Formalization

In the previous examples, we
completed in one pass over the
CFG

* This won’t always be the case,

due to a fundamental construct... loops
* Loops (specifically back edges)

create cyclic dependencies

A

Oh brother, you might have some 166ps

13



Loops: Dependency cycles

Dataflow: Formalization
Constant propagation
IN(B2) requires knowing OUT(B2)

 Startsets “TBD” ( ) value
| | B1: enter Bl x|y |((Bl|{x|y||Bl|{x|y
* Run the algorithm until sets don’t (%] = 3 N N N
change ouT ouT|{3} ouT|{3}
We’ve seen the saturation
approach before
B2: [y] := [x] B2| x|y ||B2|x|y||B2[x]|y
e (FIRST and FOLLOW sets) jmp [x] := 3 IN IN IN | {3}
ifz rand () goto B3 ouT OouT| {3} OuUT|{3}| {3}
B3: [tl] := [x] + [Vy] B3| x|y |IB3|x|y||B3|x]|Yy
setret [tl] IN IN |{3} IN |{3}] {3}
leave ouT OUT|{3} ouT|{3}] {3}




Handling Practical Data Abstractions

Global Dataflow: Formalization

Undefined Behavior Bl: enter Bl x|y
[t1] := [x] LT64 4 IN
int main () { ifz [t1] goto B3 SO
int x,y;
if (x == 4){
y = 1
} B2] x|y |[B2[x]y
return y + 3; jmp [BZ: [yv] =1 ] IN IN
} ouT ouT {1}
* Could we fold y + 37
B3: [t2] := [v] (3] [|IB1{x|y||Bl| x|y
setret [t2] IN IN {1}
Would need e = . i

to have types
of unknowns

15



Today’s Outline

IR Optimization

Rounding out dataflow analysis concepts
* Some more examples

* Considering more complex code

* Instantiating Dataflow Framework
Abstract Interpretation

* Concepts

* Examples

Optimization

16



Complicated Fact Sets

Occasionally, fact
sets exceed their
usefulness, e.g.:

* Constant
propagation: once
we have > 1 value
in a set, we don’t
really care what the
values are

* Change the domain
of values to match
what we can learn /
use in analysis

Dataflow: Formalization

=lo_.5, manrremxyneedtoknowl

17



Complicated Fact Sets

Occasionally, fact
sets exceed their
usefulness, e.g.:

* Constant
propagation: once
we have > 1 value
in a set, we don’t
really care what the
values are

e Change the domain
of values to match
what we can learn /
use in analysis

Dataflow: Formalization

s N
BO: enter
. [yl =0 Y,
¥ 3
s N
Rl:[x] := INPUT
1ifz [x] goto B3
. Y,

[T

jmp | B2: [y] := [y] + 1
goto Bl

r

B3: setret [vy]
leave

BO Yy
IN

ouT

Bl Yy
IN

ouT

B2 Yy
IN

ouT

B3 Yy

ouT

18




Complicated Fact Sets

Occasionally, fact
sets exceed their
usefulness, e.g.:

* Constant
propagation: once
we have > 1 value
in a set, we don’t
really care what the
values are

e Change the domain
of values to match
what we can learn /
use in analysis

Dataflow: Formalization

Before

{1}, {1,2}, ...

After

1,2,3, ..

Allows
“ranking” fact
sets




Ranking Fact Sets

Dataflow: Formalization

Before
Values form a lattice Set of Known

Values merge to their least upper bound Values
{1}, {1,2}, ..

T

/N B
We Don’t Could be

Single Constant

w 1-2} {-1} {0} {1} {2} -

Value Anything
W 123 LN TN

1

20



Reaching a Fixpoint

Dataflow: Formalization

Values form a /attice When the lattice has a finite size:

Values merge to their least upper bound i ) )
* Guarantees termination of the analysis

T * Merges are monotonically non-decreasing
/I\ * Local steps add finite element from the
lattice
- {2} {-1p {0} {1} {2} - * Stop when no set grows

W

1



Dataflow: Formalization

p
BO: enter

[y] = 0

p
Bl:[x] := INPUT
ifz [x] goto B3

\

Incorporating Predicates

|

{BZ: [yl = [x]

OUTPUT

{33;

setret
leave

[v]

BO X Yy
IN 1 1
ouT 1 1
Bl X Yy
IN 1 1
ouT 1 1
B2 X Yy
IN 1 1
ouT L 1
B3 X Yy
IN 1 1
ouT 1 1

22



summary

IR Optimization

Covered some key optimization concepts
* Inter-block (global) analysis

e Dataflow frameworks:
* Define fact sets and how they interact

Next Time — Static Single Assignment (SSA)

* A program form that eases and enhances
optimization















	Slide 1: Check-in Review: Dataflow
	Slide 2: Announcements Review: Dataflow
	Slide 3: Abstract Interpretation
	Slide 4: Previously… Review: Dataflow
	Slide 5: Merging Fact Sets Dataflow Intuition
	Slide 6: Today’s Outline IR Optimization
	Slide 7: Refresh Constant/Copy Propagation Dataflow: Formalization
	Slide 8: Example Analyses Dataflow: Formalization
	Slide 9: Example Constant Propagation Dataflow: Formalization - Example
	Slide 10: Today’s Outline IR Optimization
	Slide 11: Handling Practical Programs Global Dataflow: Formalization
	Slide 12: Analysis Termination Dataflow: Formalization
	Slide 13: Analysis Termination Dataflow: Formalization
	Slide 14: Loops: Dependency cycles Dataflow: Formalization
	Slide 15: Handling Practical Data Abstractions Global Dataflow: Formalization
	Slide 16: Today’s Outline IR Optimization
	Slide 17: Complicated Fact Sets Dataflow: Formalization
	Slide 18: Complicated Fact Sets Dataflow: Formalization
	Slide 19: Complicated Fact Sets Dataflow: Formalization
	Slide 20: Ranking Fact Sets Dataflow: Formalization
	Slide 21: Reaching a Fixpoint Dataflow: Formalization
	Slide 22: Incorporating Predicates Dataflow: Formalization
	Slide 23: Summary IR Optimization
	Slide 24
	Slide 25
	Slide 26
	Slide 27

