Check-In

Review: The post-compilation toolchain

Virtual memory simplifies the task of the loader. What extra steps does
the loader need to take without virtual memory?



e Uhiv_ersity of Kansas| Drew Davidson

MMH" H"l!—ﬂl"‘ HK

CONSTRUCTION

Aachme Code
Optimization

s



Previously

Post-compilation toolchain

Compiler Toolchains

* Overview

* What GCC Does
Component Walkthrough
* Assembler

* Linker

* Loader




Postcompilation
Pit-stop

|.
|\

ATRLE N MDA bt
1084 g Voue

Semantic %
Analysis

egljlar l.

Languagesy
R 3 /

COMPILER

Lexical
Analysis




Compiler Construction

Progress Pics

e \ Finished

v .
Scanner ) * A naive workflow from source

Lexical analysis |

code to target code

Parser
: Syntacticianalysis : TO-DO
Semantic analysis
) ; - * Clean up some of the corners we
Intermediate code
generation ) CUt
v
IR optimization
2 + ™
Final Code We’ve focused on correctness over
L efficiency, let’s try to win back

optimization ) some e_ffICIency



Today’s Outline

Machine Code Optimization

Overview

Improving data allocation
* Register allocation
Improving Final Code

* Peephole optimization

* Instruction Pipelines

Optimization



Working With the Architecture

Machine Code Optimization

Good machine code should:

* Play to the strengths of the hardware

 Compensate for weaknesses of the hardware

Such operations depend on specifics of the architecture




Disclaimer: This is a Deep Area

Machine Code Optimization

We hardly scratch the surface of compiler optimizations

* There are more categories of machine-code optimization
than we’ll cover

* There are more optimizations within the categories we do
cover

The tip of the iceberg



Today’s Outline

Machine Code Optimization

Overview

Improving data allocation
* Register allocation

Improving Final Code
* Peephole optimization
* Instruction Pipelines

Optimization



Sizing Activation Records

Machine Code Optimization: Data Allocation

Easy mode: one AR slot for every temp, local, and arg

Source code 3AC Code Memory at Runtime

int foo(int a) { enter foo %rsp %rbp
int v; getarg 1, [a]
int r; [t1] := [a] * [a] J \ J
v = a-ara; [v] = [a]l - [tl] Lint rint t14 int v int a Hold RBPL old RIPY
r=v - 2; [r] = [v] - 2

) foo AR

Surely one could use fewer memory slots!

Maybe we could
share some slots



Liveness

Machine Code Optimization: Data Allocation

* A definition is live if it’s value is subsequently used

* Insight: Variables can share space when they don’t
interfere (i.e. aren’t simultaneously live)

* We’ll capture the constraints via an abstraction
called the interference graph

Use/Definition Sequence

Line_1
Line_2
Line_3
Line_4
Line_5
Line_6
Line_7
Line_8

(s} aé

4




The interference graph:

Liveness

Machine Code Optimization: Data Allocation

* Nodes are variables

e Edges show simultaneously live variables

Use/Definition Sequence

Line_1
Line_2
Line_3
Line_4
Line_5
Line_6
Line_7
Line_8

=)
I

4

Interference Graph

12



Liveness

Machine Code Optimization: Data Allocation

Coloring:
* Assign each storage location to a color

* Color the interference graph so no nodes of the same
color are adjacent

Use/Definition Sequence Interference Graph

Line_1
Line_2
Line_3
Line_4
Line_5
Line_6
Line_7
Line_8

=)
I

40




Liveness

Machine Code Optimization: Data Allocation

Allocation: Map all variables to their color’s location

Memory at Runtime

%rsp %rbp

-B/CJA/D-OId RBPtold RIP?
foo AR

Unfortunately, coloring is NP-Compete ®

Use/Definition Sequence Interference Graph Allocation
Line_1 := -24(%rbp) :=...
Line_2 I—!:= ° ° -32(%rbp) := ...
Line_3 P B Loc]_ e o — —32(%rbp)
Line_4 (Cl=— -32(%rbp) :=
Line_5 '= —24(%rbp)
Line_6 @_— -24(%rbp)
Line_7 :=@<— ° e '= —24(%rbp)

Line_8 o 15[ C Je——

)

:=-32(%rbp) 1,



Today’s Outline

Machine Code Optimization

Improving data allocation

[ * Register allocation }

Improving Final Code
* Peephole optimization
* Instruction Pipelines

Optimization

15



Register Allocation

Machine Code Optimization: Register Allocation

When possible, keep variables entirely in registers
Why?

 Some computation requires register operands

* Register operands are intrinsically faster

Register coloring

* Assign a color to each available register

» Optimal assighment is NP-Complete ®



Problem: Callee clobbers registers!

enter foo
[f1] := 2
[f2] := 3
call bar

[f3] := [f2] + [f1]

leave foo

enter bar
[b1] :=9
[b2]/:=7

[glb_g] := [b1] - [b2]

leave foo

foo:

pushq %rbp
movq %rsp, %rbp
addq $16, %rbp
movq $2, %r9
movq S3, %r10

o'>callq bar

o'>addq %r9, %r10

popq %rbp
retq

bar: pushq %rbp
movq %rsp, %rbp

a

ddqg $16, %rbp

9 movq $9, %r9
movq S7, %r10
subq %r10, %r9

(3 g

P

movq %r9, (glb_g)

opg %rbp

retq

Machine Code Optimization: Register Allocation

Ox7FA0 Ox7FA8 Ox7FBO Ox7FB8 0x7FCO

rbp Ox7FCO
- — rsp Ox7FBO
old rbp|old rip rgp ZX
free foo AR r10 3

\

Ox7FA0 Ox7FA8 Ox7FBO 0x7FB8 0x7FCO

rbp Ox7FCO
old rbp|old rip 'sp. Ox7FBO
r9 9
free foo AR r10 7

O0x7FAO Ox7FA8 O

Xx7FBO 0x7FB8 Ox7FCO
ox7tc0| .. | .. | .. |'PP 8";:‘8
old rbp|old ripjold rbp|old rip :;p ZX
bar AR foo AR 10 3

.

Ox7FAO Ox7FA8

A 4

Ox7FBO 0x7FB8 0x7FCO

old rbp|old ripjold rbp

old rip

bar AR

foo

AR

rbp Ox7FBO
rsp Ox7FAQ
r9 9

r10 7

)17



Which Registers To Use?

Machine Code Optimization: Register Allocation

Register Allocation Complication:
* Callees overwriting registers

* Callees can’t statically learn which registers the caller is using

Assume these general purpose registers %r11, %rl2, %r13, %ri14, %rl5

Needs 2 %rll
registers %rl2

baz

Needs 2 %rll
registers %r12

(o)
Needs 3 sorl3

registers %rla
& %r15




Register Conventions

Machine Code Optimization: Register Conventions

Calling convention indicates which registers should be
preserved across calls

* Preserved (callee-saved): rbx, rsp, rbp, r12, r13, r14, r15

 Volatile (caller-saved): rax, rdi, rsi, rdx, rcx, r8, r9, r10, r11



Preserving Register Values

Machine Code Optimization: Register Conventions

Analogy: housesharing

@ Vo

airbnb

Imagine a function call. There’s a
caller and a callee. Let’s use an
analogy

 Me (homeowner): caller
* You (guest): callee
Function call: you stay at my house.

20



Preserving Register Values

Machine Code Optimization: Register Conventions

Analogy: housesharing

g?;
| %r08
1 ox12

. Kitchen / Dining
187 sq ft :

Bedroom 2
122sqft

| %ri13
1| ox1111
{ 111111

preserved

Imagine a function call. There’s a
caller and a callee. Let’s use an
analogy

* Me (homeowner): caller
* You (guest): callee

Function call: you stay at my house.
Rooms: registers

« Common rooms: you can goof
around in there (volatile)

e Restricted rooms: don’t touch
anything (preserved)

21



Preserving Register Values

Machine Code Optimization: Register Conventions

) Respectful housesharing
| vqlatl!e

— In the call
| %r08 %r09 | o%r11 | - You only touch the volatile registers Allowed
[ 4 I )xﬁ: 0x13 | m After the caller
: 2 0x1 -1 don’t care
| can count on
%rl1l’s being same
! T Caller code | cannot count on
| Zris movq $0x13, %r11 %r08's value
1 i movq $0x12, %r08

callg
preserved , {addq $1, %rl1l ]

movq S0, %r08

22



Preserving Register Values

Machine Code Optimization: Register Conventions

Respectful housesharing

}vqllatille = In the call
2 | ' : - You only touch the volatile registers Allowed
s %r09 %rll
%r08 of 2 9(,{3 0 After the caller
; 9"{2 5 I )Hloxl 8 -1 don’t care

Kitchen / Dining ! Bedroom 1

Disrespectful housesharing

In the call

- You (also) touch the preserved registers
o lllegal
s After the caller

! (violated System V ABI)
%r13

0| ox1111

- Caller’s expectation violated!!

1111111 Caller code
movq S0x13, %ril1
preserved ' movqg S0x12, %r08
callg

[addq $1, %r11 |
movq SO, %r08

23



Preserving Register Values

Machine Code Optimization: Register Conventions

I% %r08
| SMZ
2

- Kitchen / Dining
: 187 sq ft
T
— fl

Bedroom 2
122sqft

| %ri13
Ox1111
111111

preserved

Respectful housesharing

In the call

- You only touch the volatile registers Allowed
After the caller

-l don’t care

Disrespectful housesharing

In the call

- You (also) touch the preserved registers
After the caller

- Caller’s expectation violated!!

lllegal
(violated System V ABI)

Sneaky housesharing

In the call

- You (also) touch the preserved registers

- You restore the preserved values before return
After the caller

- The caller never knows of your deviance

Allowed

24



Implementing Register Conventions

Machine Code Optimization: Register Conventions

Using callee-saved registers Using caller-saved registers
Being a “sneaky guest” Being a “sneaky owner”
* Push the preserved e Save a volatile register to
register values before you the stack
use them

* Pop the stacked values
* Pop the stacked values before you return
before you return

Prologue Epilogue Call site
pushq %rbp addq $32, %rsp

movq %rsp, %rbp

addq $16, %rbp callq fn_callee

popq %rbp
retq
subq $32, %rsp



Today’s Outline

Machine Code Optimization

Improving data allocation
* Register allocation
Improving Final Code

[* Peephole optimization J

* Instruction Pipelines

Optimization

26



Fixing “Obviously Sub-Optimal” Code

Machine Code Optimization: Peephole Optimizations

A code generator may output
obviously “weak” code
 why?

— Ignoring global context

— Correctness-first design

Solution: pattern-match the
most obvious problems

An obvious flaw

27



The ldea of the Peephole

Machine Code Optimization: Peephole Optimizations

 Called “peephole”
optimization because we
are conceptually sliding a
small window over the
code, looking for small
patterns

28



Remove semantic no-op sequences

Remove Semantic No-ops

Machine Code Optimization: Peephole Optimizations

* Push followed by pop

 Add/sub O
e Mul/div 1
| subg $8, Srsp
push . movg %rl0, (3rsp) . . .
- movg (%rsp), %rl0 addg $0 %rax imulg $1 %rbx
Pop -_ addg $8, Srsp




Sequence Simplification

Machine Code Optimization: Peephole Optimizations

Useless instruction

* Store then load
movqg %srax, -8 (3srbp)
movqg -8 (%rbp) S%rax

Just add 3

e Arithmetic equivalence

addg S$1 %rill
addg $2 %rill

° Jump to next Useless instruction

<:§;;/)Labell

Labell: addg $2, %rax




Instruction Strength Reduction

Machine Code Optimization: Peephole Optimizations

Instruction Strength Reduction

- Prefer “weak” (narrow/specialized
instruction) instead

- Avoid “strong” (general-purpose)
Instruction

imulg $2 %raxD addg $1 %rax ‘j
shift-left %rax inc %rax

Requires knowledge of the fast and “Weaker” is better
slow instructions

31



Peephole Optimization: Summary

Machine Code Optimization: Peephole Optimizations

Concept
* Final code “postprocessing”

* Slide a window over the program that pattern-matches suboptimal
cases

Benefits
* Remove some consequences of naive machine code generation

* Leverage hardware features
* Faster instructions



Today’s Outline

Machine Code Optimization

Improving data allocation
* Register allocation
Improving Final Code

* Peephole optimization

[ * Instruction Pipelines }

Optimization

33



Background: Multi-stage Cycles

Machine Code Optimization: Delay Slots — Branch Hazards

The classic cycle of a processor:

Fetch - read value at the program counter

Decode — figure out what the instruction is

Execute — do what the instruction

Write-back — commit the results to register/memory

If we did all of this sequentially, we’d waste time &
resources



Background: Instruction Pipelines

Machine Code Optimization: Delay Slots — Branch Hazards

Idea: Start on next instruction before current done

I,: addq %rax %rbx
I, : subq %rcx Yordx

Time Time Time Time Time Time Time Time Time
t, t, t, t, t, t t, t, tg

. Fetch :Decode | Execute| Write | Fetch | Decode! Execute! Write |

35



Background: Instruction Pipelines

Machine Code Optimization: Delay Slots — Branch Hazards

Idea: Start on next instruction before current done

Iﬁ addqf%max‘%mbx
L, : subq Yorcx %ordx

Time Time Time Time Time Time Time Time Time
t, t, t, t, t, t t, t, tg

e 1 a a S
: 1, ¢ : : : 2
rerch [ A A A e o
. Fetch | | . Fetch | :
Instr L | ] L
Decode | 9 | 5 e

' Decode | | | ' Decode

s s e s s i
EExecuteE E E E Executeé

Writeback § § § !
| I, | e | L

Write Write

36



Background: Instruction Pipelines

Machine Code Optimization: Delay Slots — Branch Hazards

Idea: Start on next instruction before current done

If addqf%max‘%mbx
L, : subq Yorcx %ordx

Time Time Time Time
G g addg %rax, %rbx

addg %rbx, %Srcx
addg %rdx, %rll

Time Time Time Time Time
t t, t, ty t, te te

Instr I I,

Instr E E I, E I,
Decode & | |
Execute ; | | I, I, addg %rax, %Srbx
| | | addg %rdx, S%rll
| | | | | addg %rbx, %rcx
Writeback B § : § §
s s s L b

37



Lecture End!

Machine Code Optimization: Wrap-Up

Summary:

Be careful about which instructions you use
 Selection: the choice of instructions in output
e Scheduling: the order of instructions in output
Next Time:

* Optimizing program structure



	Slide 1: Check-In Review: The post-compilation toolchain
	Slide 2: Machine Code Optimization
	Slide 3: Previously Post-compilation toolchain
	Slide 4
	Slide 5: Compiler Construction Progress Pics
	Slide 6: Today’s Outline Machine Code Optimization
	Slide 7: Working With the Architecture Machine Code Optimization
	Slide 8: Disclaimer: This is a Deep Area Machine Code Optimization
	Slide 9: Today’s Outline Machine Code Optimization
	Slide 10: Sizing Activation Records Machine Code Optimization: Data Allocation
	Slide 11: Liveness Machine Code Optimization: Data Allocation
	Slide 12: Liveness Machine Code Optimization: Data Allocation
	Slide 13: Liveness Machine Code Optimization: Data Allocation
	Slide 14: Liveness Machine Code Optimization: Data Allocation
	Slide 15: Today’s Outline Machine Code Optimization
	Slide 16: Register Allocation Machine Code Optimization: Register Allocation
	Slide 17: Problem: Callee clobbers registers! Machine Code Optimization: Register Allocation
	Slide 18: Which Registers To Use? Machine Code Optimization: Register Allocation
	Slide 19: Register Conventions Machine Code Optimization: Register Conventions
	Slide 20: Preserving Register Values Machine Code Optimization: Register Conventions
	Slide 21: Preserving Register Values Machine Code Optimization: Register Conventions
	Slide 22: Preserving Register Values Machine Code Optimization: Register Conventions
	Slide 23: Preserving Register Values Machine Code Optimization: Register Conventions
	Slide 24: Preserving Register Values Machine Code Optimization: Register Conventions
	Slide 25: Implementing Register Conventions Machine Code Optimization: Register Conventions
	Slide 26: Today’s Outline Machine Code Optimization
	Slide 27: Fixing “Obviously Sub-Optimal” Code Machine Code Optimization: Peephole Optimizations
	Slide 28: The Idea of the Peephole Machine Code Optimization: Peephole Optimizations
	Slide 29: Remove Semantic No-ops Machine Code Optimization: Peephole Optimizations
	Slide 30: Sequence Simplification Machine Code Optimization: Peephole Optimizations
	Slide 31: Instruction Strength Reduction Machine Code Optimization: Peephole Optimizations
	Slide 32: Peephole Optimization: Summary Machine Code Optimization: Peephole Optimizations
	Slide 33: Today’s Outline Machine Code Optimization
	Slide 34: Background: Multi-stage Cycles Machine Code Optimization: Delay Slots – Branch Hazards
	Slide 35: Background: Instruction Pipelines Machine Code Optimization: Delay Slots – Branch Hazards
	Slide 36: Background: Instruction Pipelines Machine Code Optimization: Delay Slots – Branch Hazards
	Slide 37: Background: Instruction Pipelines Machine Code Optimization: Delay Slots – Branch Hazards
	Slide 38: Lecture End! Machine Code Optimization: Wrap-Up

