Check-In

Review: Activation Records

Show the layout of an activation record with two 64-bit locals. Write the function prologue
and epilogue corresponding to that function

Announcements

Administrivia

P5 officially extended
Q3 imminent!

* University of Kansas | Drew Davidson.

I -) ?'

MM n v n-' n !-ﬁr-— -

CONSTY l.' TION

Statem@-/riit Code Generahon
s

Managing the Stack

* Managing data

* Managing control

Last Lecture

Activation Records

-

o

You Should Know

How to code up stack frames
The function prologue
The function epilogue

Architecture

Call Stack Bookkeeping

Review: Stack Frames

We need to store (on the stack):

* The call site to resume execution after call

* The base pointer to restore the old stack frame after call
bookkeeping space at the beginning of the AR

caller caller
%rsp %rbp %rsp %rbp

Program memory l

Address Address Address Address Address"Address Address Address Address Address Address Address Address
0x0000 0x0001 0x0002 0x0003 0x0004 0x0005 0x0006 0x0007 0x0008 0x0009 OxO00A 0x000B 0x000C

[(instructions) | intl6 g . intl6 v save BP|| save IP intl6 k |save BP|save IP

Ve e omeaioseen | Gl

code vars
code data Heap <- Stack

A Less-Trivial x64 Program

Review: Stack Frames

g : 1nt;

v : () void {
local : 1int;
g =9 - 1
local = gy

give local;

}

maln : ()int {

Addressing modes

Toward l.ocal Variables

Some Nice “Shortcuts”

e Often want to read memory at a fixed
offset from some register

“the memory at 8 bytes before %rbp”
* Good news! X64 can do that:
movqg -8 (%rbp), %rax
* This is a very handy addressing mode

leag -8 (%rbp), %Srax

Where We're At

Progress Pics

Assembled quite a few x64 concepts
e Basic data manipulation (movq)

e Basic math (addq, idivq, etc)

* Global data (.data, .quad, .byte)

* Local data

* Function calls

You can now hand-code some non-trivial
programs

COMPILER

Yute umun -t
L Ll A

Semantic
Analysis

Loty
Lo whees
AONE O T

e ” -
oI i
A egular =

/ Languages .

Lexical
Analysis

Lecture Outline

Statement Code Generation

From Quads to Assembly
* Approach Overview

* Planning out memory

* Writing out x64

Code generation

10

Representing Abstract Constructs

Statement Code Generation

Combine (simple) target
language constructs...

...to build (complex) source
language constructs

11

Our Approach: Small Steps

Code Generation

2 passes over IRProgram (like passes over AST)

1. Allocate memory for opds (data pass)
2. Generate code for quads (code pass)

12

Code Generation Objectives

Designing Code Generators

* Two high level goals:

— Generate correct code ¢=m=
— Generate efficient code

migaion /IEEGETEEE

e |t can be difficult to achieve both at once

— Efficient code can be harder to understand
— Efficient code may have unanticipated side effects

13

Our Approach: Small Steps

Code Generation

2 passes over IRProgram (like passes over AST)

1. |Allocate memory for opds (data pass) j/ Preparing the

2. Generate code for quads (code pass) /3AC memory
ayout

14

Variable Allocation

Code Generation

Big picture:

* Every variable needs space in enough space in memory for its type

* Every quad using that variable needs to access the same location

Need a mix of static/dynamic allocation

* Put globals/strings at fixed addresses in memory (absolute locations)

* Put locals/formals at stack offsets in memory (relative locations)

Program memory

Address Address Address Address Address

%rsp

'Address Address

Address

caller

%rbp %rsp

Address Address

Address

Address Address:'

caller
%rbp

0x0000 0x0001 Ox0002 0x0003 Ox0004 Ox0005 Ox0006 O0x0007 Ox0008 0x0009 OxO00A OxO00B 0x000C
| (instructions) | intl6g | intl6 v save IP |/save BP int16 k save |P |/save BP
Pl e | Comemadiotonteod | Gllercvatonecord
code vars
code data Heap <- Stack

15

Allocation: In Code (suggestion)

Code Generation

Add a location field (std::string) to semantic symbols

* All related SymOpds have pointers to the same symbol
Location can be a string

* For globals, the label that you’ll write
* For locals, the stack offset you’ll arrange

Variable Allocation: Globals

Code Generation

3AC Code X64 Code
... in .data section ...

= 4
r\/[g] gbl g: .quad 0

location: . .
At label Where g is a global int

gbl_g

... Somewhere in .text section ...

movg $4, (gbl g)

Compiler Data Structure

SemSymbol

kind: var

type: int
IR globals location: “gbl_g”

Program
LitOpd
Iocals{ (none) P

val: 4
Procs EnterQuad
main

- quads— AssignQuad B

dst src

17

Variable Allocation: Locals

Code Generation
3AC Code X64 Code
{‘\/[V] N ... assume stack frame setup ...
on- ... somewhere in main’s asm ...
/thlon' Where v is a local int
t offset o
-24(%rbp) movqg S7, -24(%rbp)
Compiler Data Structure SemSymbol

kind: var

type: int
IR - globals { (none) location: “-24(%rbp)”
Program

———locals { vV [T LitOpd
main
- quads— AssignQuad M

dst Ssrc
18

Our Approach: Small Steps

Code Generation

2 passes over IRProgram (like passes over AST)
1. Allocate memory for opds (data pass)

2. |Generate code for quads (code pass) \\/ Write the

assembly

file

19

Assembly Directives/Initialization

Code Generation

We're gonna write the whole file in one shot
* Aided greatly by our preparatory layout pass
* Also aided by the assembler

Write out .data section:

.data
.globl: main
<globall label> : <globall type> <globall val>

;globall_label> : <globall type> <globall val>
Walk each 3AC Procedure, output each quad

enter main

Generating Code for Quads

Code Generation

Generating Code for Quads

Code Generation

enter <proc>

leave <proc>

<opd> := <opd>

<opd> := <opr> <opd>
<opd> := <opd> <opr> <opd>
<lbl>: <INSTR>

ifz <opd> goto <Ibl>

goto Li

nop

call <name>
setin <int> <operand>

getin <int> <operand>
setout <int> <operand>

getout <int> <operand>

Generating Code for Quads: enter/leave

Code Generation
enter <proc>
On entry to the function: T leave <proc> —
. . . Prologue Epilogue
Set up the activation record pushq—g—%rbp adJ’—g—dq X rso
On exit from the function movq %rsp, %rbp popq %rbp
addq $16, %rbp retq
* Break down the activation record subq $X, %rsp

Make function prologue/epilogue

Generating Code for Quads: enter/leave

src code

int main(){

}

3ac code

enter main
leave main

Code Generation
T enter <proc>
leave <proc> j
q Prologue Epilogue
asin coge pushq %rbp addq SX, %rsp
Ibl_main: pushq %rbp movq %rsp, %rbp popq %rbp
movq %rsp, %rbp addq $16, %rbp retq

addq $16, %rbp
subq SO, %rsp
addq SO, %rsp
pushq %rbp
retq

subq SX, %rsp

Generating Code for Quads

enter <proc>

leave <proc>

<opd> := <opd>

<opd> := <opr> <opd>
<opd> := <opd> <opr> <opd>
<lbl>: <INSTR>

ifz <opd> goto <Ibl>

goto Li

nop

call <name>
setin <int> <operand>

getin <int> <operand>
setout <int> <operand>

getout <int> <operand>

Code Generation

For assignment-style quads...
1) Load operand src locations into registers
2) Compute a value to register

3) Store result at dst location

Assignment-Style Quads

Code Generation
3AC
(a] := [b] + 4 For assignment-style quades...
1) Load operand src locations into registers
2) Compute a value to register
3) Store result at dst location
ASM

1) movqg —-24 (3srbp), S%Srax

1) movg $4, S$rbx ZT‘ o Zj [7
2) addg %rbx Srax a 7 .= L:‘ br lf

3) movg %rax (gbl a)

Questions?

Code Generation

L‘[‘/} — lec ‘c L
L\/S - lLecc C?\evuwﬂ/(tw’) \/HA VW{CO
4/ 7 - QS

§/ 0 = bee

Y1 - | cc

AWAC SRR\ T F"?“/

	Slide 1
	Slide 2
	Slide 3: Statement Code Generation
	Slide 4
	Slide 5: Call Stack Bookkeeping Review: Stack Frames
	Slide 6: A Less-Trivial x64 Program Review: Stack Frames
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Lecture Outline Statement Code Generation
	Slide 11: Representing Abstract Constructs Statement Code Generation
	Slide 12: Our Approach: Small Steps Code Generation
	Slide 13: Code Generation Objectives Designing Code Generators
	Slide 14: Our Approach: Small Steps Code Generation
	Slide 15: Variable Allocation Code Generation
	Slide 16: Allocation: In Code (suggestion) Code Generation
	Slide 17: Variable Allocation: Globals Code Generation
	Slide 18: Variable Allocation: Locals Code Generation
	Slide 19: Our Approach: Small Steps Code Generation
	Slide 20: Assembly Directives/Initialization Code Generation
	Slide 21: Generating Code for Quads Code Generation
	Slide 22: Generating Code for Quads Code Generation
	Slide 23: Generating Code for Quads: enter/leave Code Generation
	Slide 24: Generating Code for Quads: enter/leave Code Generation
	Slide 25: Generating Code for Quads Code Generation
	Slide 26: Assignment-Style Quads Code Generation
	Slide 27: Questions? Code Generation

