
Show the layout of an activation record with two 64-bit locals. Write the function prologue
and epilogue corresponding to that function

Check-In
Review: Activation Records

2

Announcements
Administrivia

P5 officially extended

Q3 imminent!

Statement Code Generation

University of Kansas | Drew Davidson

3

Managing the Stack

• Managing data

• Managing control

4
Architecture

Last Lecture
Activation Records

You Should Know

How to code up stack frames
The function prologue
The function epilogue

Call Stack Bookkeeping
Review: Stack Frames

5

We need to store (on the stack):

• The call site to resume execution after call

• The base pointer to restore the old stack frame after call

bookkeeping space at the beginning of the AR

Address
0x0000 0x0001 0x0002 0x0005 0x0007 0x0008 0x0009 0x000A0x0006

…

Address Address Address Address Address Address Address Address

code data

function
code

global
vars

int16 g(instructions)

… …

0x0003 0x0004
Address Address

… …

Address
0x000B

Address
0x000C

Malloc
 data

Heap

Caller Activation Record

int16 k

<- Stack

Current Activation Record

int16 v

%rsp %rbp

caller
%rbp

caller
%rsp

save BP save IP save BP save IP

Program memory

A Less-Trivial x64 Program
Review: Stack Frames

6

g : int;

v : () void {
 local : int;

 g = g – 1;

 local = g;

 give local;

}

main : ()int {

 g = 2;

 v();
};

Some Nice “Shortcuts”

• Often want to read memory at a fixed
offset from some register

 “the memory at 8 bytes before %rbp”

• Good news! X64 can do that:

 movq -8(%rbp), %rax

• This is a very handy addressing mode

 leaq -8(%rbp), %rax

7

Addressing modes
Toward Local Variables

“Move the value AT
%rbp – 8 into %rax”

=
movq %rbp, %rdx
subq $8, %rdx
movq (%rdx), %rax

“Move the value OF
%rbp – 8 into %rax”

=
movq %rbp, %rdx
subq $8, %rdx
movq %rdx, %rax

Assembled quite a few x64 concepts

• Basic data manipulation (movq)

• Basic math (addq, idivq, etc)

• Global data (.data, .quad, .byte)

• Local data

• Function calls

You can now hand-code some non-trivial
programs

8

Where We’re At
Progress Pics

9

COMPILER

Regular
Languages

Syntactic
Definition

Lexical
Analysis

Parsing
Syntax-Dir
Translation

Optimization

Semantic
Analysis

Code
Generation

Runtime
Environments

Architecture

Lecture Outline
Statement Code Generation

Code generation

From Quads to Assembly

• Approach Overview

• Planning out memory

• Writing out x64

10

Representing Abstract Constructs
Statement Code Generation

Combine (simple) target
language constructs…

11

Logical ops
math ops

Stack ops jumps

output
program

…to build (complex) source
language constructs

Our Approach: Small Steps
Code Generation

12

2 passes over IRProgram (like passes over AST)
1. Allocate memory for opds (data pass)

2. Generate code for quads (code pass)

• Two high level goals:

– Generate correct code

– Generate efficient code

• It can be difficult to achieve both at once

– Efficient code can be harder to understand

– Efficient code may have unanticipated side effects

Code Generation Objectives
Designing Code Generators

13

Difficult

Top priority

Our Approach: Small Steps
Code Generation

14

2 passes over IRProgram (like passes over AST)
1. Allocate memory for opds (data pass)

2. Generate code for quads (code pass)
Preparing the
3AC memory
layout

Variable Allocation
Code Generation

15

Big picture:

• Every variable needs space in enough space in memory for its type

• Every quad using that variable needs to access the same location

Need a mix of static/dynamic allocation

• Put globals/strings at fixed addresses in memory (absolute locations)

• Put locals/formals at stack offsets in memory (relative locations)

Address
0x0000 0x0001 0x0002 0x0005 0x0007 0x0008 0x0009 0x000A0x0006

…

Address Address Address Address Address Address Address Address

code data

function
code

global
vars

int16 g(instructions)

… …

0x0003 0x0004
Address Address

… …

Address
0x000B

Address
0x000C

Malloc
 data

Heap

Caller Activation Record

int16 k

<- Stack

Current Activation Record

int16 v

%rsp %rbp

caller
%rbp

caller
%rsp

save IP save BP save IP save BP

Program memory

Allocation: In Code (suggestion)
Code Generation

16

Add a location field (std::string) to semantic symbols

• All related SymOpds have pointers to the same symbol

Location can be a string

• For globals, the label that you’ll write

• For locals, the stack offset you’ll arrange

Variable Allocation: Globals
Code Generation

… in .data section …

Where g is a global int

[g] := 4

… somewhere in .text section …

movq $4, (gbl_g)

gbl_g: .quad 0

3AC Code X64 Code

17

location:
At label
gbl_g

dst

kind: var
type: int

AssignQuad src

g

SymOpd

SemSymbol

location: “gbl_g”

Procs
main

EnterQuad

LeaveQuad

globals

quads

locals (none)

IR
Program

val: 4

LitOpd

Compiler Data Structure

Variable Allocation: Locals
Code Generation

… assume stack frame setup …

Where v is a local int

[v] := 7
… somewhere in main’s asm …

movq $7, -24(%rbp)

3AC Code X64 Code

18

location:
At offset

-24(%rbp)

dstAssignQuad src

Procs
main

v

EnterQuad

LeaveQuad

globals

quads

locals

SymOpd

IR
Program

val: 7

LitOpd

kind: var
type: int

SemSymbol

location: “-24(%rbp)”(none)

Compiler Data Structure

Our Approach: Small Steps
Code Generation

19

2 passes over IRProgram (like passes over AST)
1. Allocate memory for opds (data pass)

2. Generate code for quads (code pass) Write the
assembly
file

Assembly Directives/Initialization
Code Generation

20

We’re gonna write the whole file in one shot

• Aided greatly by our preparatory layout pass

• Also aided by the assembler

Write out .data section:
.data

.globl: main

<global1_label> : <global1_type> <global1_val>

…

<global1_label> : <global1_type> <global1_val>

Walk each 3AC Procedure, output each quad

enter main

Generating Code for Quads
Code Generation

21

Compiling

Generating Code for Quads
Code Generation

22

call <name>
setin <int> <operand>

setout <int> <operand>

getout <int> <operand>

getin <int> <operand>

enter <proc>

leave <proc>

ifz <opd> goto <lbl>

goto Li

<lbl>: <INSTR>

<opd> := <opd> <opr> <opd>

<opd> := <opr> <opd>

<opd> := <opd>

nop

Generating Code for Quads: enter/leave
Code Generation

23

On entry to the function:

• Set up the activation record

On exit from the function

• Break down the activation record

Make function prologue/epilogue

enter <proc>

leave <proc>

pushq %rbp
movq %rsp, %rbp
addq $16, %rbp
subq $X, %rsp

addq $X, %rsp
popq %rbp
retq

EpiloguePrologue

enter <proc>

leave <proc>

24

pushq %rbp
movq %rsp, %rbp
addq $16, %rbp
subq $X, %rsp

addq $X, %rsp
popq %rbp
retq

EpiloguePrologue

int main(){
}

enter main
leave main

lbl_main: pushq %rbp
 movq %rsp, %rbp
 addq $16, %rbp
 subq $0, %rsp
 addq $0, %rsp
 pushq %rbp
 retq

src code asm code3ac code

Generating Code for Quads: enter/leave
Code Generation

Generating Code for Quads
Code Generation

25

For assignment-style quads…
1) Load operand src locations into registers

2) Compute a value to register

3) Store result at dst location

call <name>
setin <int> <operand>

setout <int> <operand>

getout <int> <operand>

getin <int> <operand>

enter <proc>

leave <proc>

ifz <opd> goto <lbl>

goto Li

<lbl>: <INSTR>

<opd> := <opd> <opr> <opd>

<opd> := <opr> <opd>

<opd> := <opd>

nop

ASM

Assignment-Style Quads
Code Generation

26

[a] := [b] + 4

movq -24(%rbp), %rax

movq $4, %rbx

addq %rbx %rax

movq %rax (gbl_a)

3AC
For assignment-style quads…
1) Load operand src locations into registers

2) Compute a value to register

3) Store result at dst location

1)

1)

2)

3)

SymOpd

Symbol location: “gbl_a”

SymOpd

Symbol location: “-24(%rbp)

Questions?
Code Generation

27

	Slide 1
	Slide 2
	Slide 3: Statement Code Generation
	Slide 4
	Slide 5: Call Stack Bookkeeping Review: Stack Frames
	Slide 6: A Less-Trivial x64 Program Review: Stack Frames
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Lecture Outline Statement Code Generation
	Slide 11: Representing Abstract Constructs Statement Code Generation
	Slide 12: Our Approach: Small Steps Code Generation
	Slide 13: Code Generation Objectives Designing Code Generators
	Slide 14: Our Approach: Small Steps Code Generation
	Slide 15: Variable Allocation Code Generation
	Slide 16: Allocation: In Code (suggestion) Code Generation
	Slide 17: Variable Allocation: Globals Code Generation
	Slide 18: Variable Allocation: Locals Code Generation
	Slide 19: Our Approach: Small Steps Code Generation
	Slide 20: Assembly Directives/Initialization Code Generation
	Slide 21: Generating Code for Quads Code Generation
	Slide 22: Generating Code for Quads Code Generation
	Slide 23: Generating Code for Quads: enter/leave Code Generation
	Slide 24: Generating Code for Quads: enter/leave Code Generation
	Slide 25: Generating Code for Quads Code Generation
	Slide 26: Assignment-Style Quads Code Generation
	Slide 27: Questions? Code Generation

