
3AC Translation

University of Kansas | Drew Davidson

1

Last Time
Intermediate Representations

Intermediate Representations

3AC

2

What you should know:

- Rational of intermediate representations
- The basic idea of 3AC

- The instruction set
- What each instruction more-or-less

does

Intermediate
Representations

The List of Instruction Templates
Review: Our 3AC Instructions

3

call <name>

setarg <int> <opd>

setret <opd>

getret <opd>

getarg <int> <opd>

enter <proc>

leave <proc>

ifz <opr> goto <lbl>

goto <lbl>

<lbl>: <INSTR>

<opd> := <opd> <opr> <opd>

<opd> := <opr> <opd>

<opd> := <opd>

nop
[a] := [b]
[a] := 7

3AC: Exercise
Another Example

int x;

int y;

while (x < y) {

x = x * 2;

}

y = x;

4

Done

• We’ve captured the semantics of
the input

• We’ve checked the program for
correctness

Next Steps

• Prepare the program for output

5

Scanner
Lexical analysis

Parser
Syntactic analysis

Semantic analysis

Intermediate code
generation

IR optimization

Final Code
generation

Final code
optimization

In progress

Compiler Construction
Progress Pics

Today’s Outline
3AC Translation

The basic idea:

• Traversing the AST

Some example nodes

• Node to quad translations

Implementation details:

• From nodes to Operations/Operands

6

Intermediate
Representations

Flattening the Tree
AST Translation to 3AC

7

Flattening the Tree
AST Translation to 3AC

8

Flattening the Tree
AST Translation to 3AC

Consider two major task categories:

What we…

Generate
• (i.e. the 3AC operations for the current node)

Propagate
• (i.e. the 3AC operands used in parent nodes)

9

Flattening The Tree: Example
Traversing the AST

Traverse AST, performing two tasks

• Generate 3AC operations

• Propagate 3AC operands

10

a = (v – 7) + a * v

[t2] := [a] MULT64 [v]

[t3] := [t1] ADD64 [t2]

[a] := [t3]

[t1] := [v] SUB64 7

AssignExp

ID
a

Mult

Plus

AssignStmt

Sub

ID
v

IntLit
7

ID
v

ID
a

1

2

3 4 5

6

7 8 9 10

11 12

13 14 15 16

17

18

19

20

a
opd

v
opd

t1
opd

7
opd

a
opd

v
opd

t2
opd

t3
opd

a
opd

A Brief Aside on Sequencing
Traversing the AST

What if we walked the tree in a different order?

• Take the RHS of the Plus before the LHS

11

a = (v – 7) + a * v

[t2] := [a] MULT64 [v]

[t3] := [t1] ADD64 [t2]

[a] := [t3]

[t1] := [v] SUB64 7

[t2] := [a] MULT64 [v]

[t3] := [t1] ADD64 [t2]

[a] := [t3]

[t1] := [v] SUB64 7

AssignExp

ID
a

Mult

Plus

AssignStmt

Sub

ID
v

IntLit
7

ID
v

ID
a

1

2

3 4 5

12

13 14 15 16

17 6

7 8 9 10

11

18

19

20

a
opd

v
opd

t1
opd

7
opd

a
opd

v
opd

t2
opd

t3
opd

a
opd

A Brief Aside on Sequencing
Traversing the AST

What if we walked the tree in a different order?

• Take the RHS of the Plus before the LHS

• C and C++ leave this choice to the compiler!

12

[t2] := [a] * [v]

[t3] := [t1] + [t2]

[a] := [t3]

[t1] := [v] - 7

[t2] := [a] * [v]

[t3] := [t1] + [t2]

[a] := [t3]

[t1] := [v] - 7

Participation
Does traversal order matter?
• In this AST?
• For all ASTs?

Example code
int foo(){ cout << “hi”; return 0; }
int bar(){ cout << “class”; return 0; }
int main(){
 cout << foo() + bar();
}

A Brief Aside on Sequencing
Traversing the AST

What if we walked the tree in a different order?

• Take the RHS of the Plus before the LHS

• C and C++ leave this choice to the compiler!

13

[t2] := [a] * [v]

[t3] := [t1] + [t2]

[a] := [t3]

[t1] := [v] - 7

[t2] := [a] * [v]

[t3] := [t1] + [t2]

[a] := [t3]

[t1] := [v] - 7

Order DOES matter
• Can change the program’s semantics!

For our language, always go left to right
(when possible)

int main(){ g = 0; return foo() * bar(); }

int bar() { g++; return g; }

int foo() { return g; }

int g;

Today’s Outline
3AC Translation

The basic idea:

• Traversing the AST

Example Nodes:

• Node to quad translations

Implementation details:

• Operations and operators

14

Intermediate
Representations

Example Nodes
Node to Quad Translations

This generate + propagate idea is powerful!

• Basically worked for previous traversals:
• Name analysis

• Type analysis

• Syntax-directed translation

• Let’s see how it works for some various node types

15

Translating AST Leaves (IDs and Lits)
AST Translation to 3AC

Generate:

• Nothing!

Propagate:

• The value for use in parent

16

a
4

ID
a

IntLit
4

AST Snippet

Translating AssignExp
AST Translation to 3AC

Generate:

• Code for the LHS (recurse)

• Code for the RHS (recurse)

• The actual assignment instruction

Propagate:

• The LHS of the assignment

17
[a] := 4

a = 4

a 4

AssignExp

b = (a = 4)

a
AssignExp

b

a 4

AssignExp

a

[a] := 4

[b] := [a]

ID
a

IntLit
4

ID
b

ID
b

IntLit
4

Translating BinaryOp Nodes
AST Translation to 3AC

Generate:

• Code for LHS, RHS (recurse in order)

• Node’s operation kind, assigning to new temp

Propagate:

• The new temp value (for use in parent)

18

[tmp1] := 7 MULT64 [v]

7 * v 7 * v + a

7 v

tmp1

Mult

IntLit
7

ID
v

[tmp1] := 7 MULT64 [v]

[tmp2] := [tmp1] ADD64 [a]

7 v

tmp1 a

Mult

Plus

ID
a

IntLit
7

ID
v

tmp2

Translating CallExpNodes
AST Translation to 3AC

Generate:

• (Recurse over args, left to right)

• setarg instrs for each argument

• call instr for function

• getret instr for the result

Propagate:

• The getret symbol

19

setarg 1, 7

setarg 2, [varX]

setarg 3, [tmp8]

call fn_foo

7
varX

CallExp

ID
val: foo

(Args)

AssignExp

ID
vaL k foo

tmp8

tmp9

getret [tmp9]

(Arg evaluation)

k = foo(7,varX,a+b)

7, varX, tmp8

src code snippet

k

[k] := [tmp9]

Translating FnDeclNodes
AST Translation to 3AC

Generate:

• enter quad to begin scope

• A label for function’s end

• getarg quads for each argument

• (recurse into body)

• leave quad to end scope

Propagate:

• Nothing

20

FnDecl

ID
val: fn (Formals)

a1

fn
a1, a2

enter fn

getarg 1, [a1]

getarg 2, [a2]

(body code)

a2

leave fn

void fn(int a1, int a2){

 …

}

body

L_fn_end:

ID
val: a1

ID
val: a2

src code snippet

Translating ReturnStmtNodes
AST Translation to 3AC

Generate:

• (recurse into expression)

• setret quad for expression tmp

• goto for the function end

Propagate:

• Nothing

21

ReturnStmt

Plus

a

[tmp1] := [a] ADD64 2

setret [tmp1]

return a+2;

ID
a

IntLit
2src code snippet

2

tmp1

goto L_fn_end

Translating IfStmtNodes
AST Translation to 3AC

Generate:

• (recurse into conditional)

• An “after the body” label

• ifz to after the body label

• (recurse into body)

• nop with the new label

Propagate:

• Nothing

22

IfStmt

(body)

tmp0

[tmp0] := 9 LT64 [var]

ifz [tmp0] goto L_a

(body code)

L_a: nopif (9 < var){

 (body code)

}

LessThan

9 var

src code snippet

Translating While Loops
AST Translation to 3AC

Generate:

• Label for loop head

• nop for loop head label

• (recurse into conditional)

• ifz to “after the body”

• (recurse into body)

• Jump back to head

Propagate:

• Nothing

23

WhileLoop

(body)

tmp0

[tmp0] := 9 LT64 [var]

ifz[tmp0] goto L_a

(body code)

L_a: nop
while (9 < var){

 (body code)

}

Cond
(9 < var)

9 var

goto L_head

L_head: nop

src code snippet

Translating Index
AST Translation to 3AC

Generate:

• Assign address of
expression to a new temp

Propagate:

• New temp

24

ID
b

tmp2

[tmp1] := [b]

 tmp2 := r @ a

record R{

 int a;

}

…

R r;

r.a = 1;

ID
a

IndexExp

src code snippet

AST snippet

3AC snippet

tmp1

Today’s Outline
3AC Translation

The basic idea:

• Traversing the AST

Example Nodes:

• Node to quad translations

Implementation details:

• Operations and operators

25

Intermediate
Representations

3AC Data Structures
AST Translation to 3AC: Implementation

26

• One class per 3AC node type
• Often referred to as “Quads” – has at most 4 fields (+ label)

• Each procedure maintains a list of its quads

tmp1 aL1 - 2

dst src1 opr src2lbl

Translation Implementation
AST Translation to 3AC

27

AssignExp

ID
val: a
Sym: 𝛼 IntLit

7
Sub

Plus

AssignStmt

ID
val: a
Sym: 𝛼

ID
val: v
Sym: 𝛽

tmp1

(𝛾)
a

(𝛼)
SUB
64

v
(𝛽)

dst src1 opr src2lbl

Symbol:
Kind: var
Type: int
Name: a

Symbol:
Kind: var
Type: int
Name: v

𝛼 𝛽 Symbol:
Kind: tmp
Type: int

Name: tmp1

𝛾 Symbol:
Kind: tmp
Type: int

Name: tmp2

𝛿

a = 7 + (a – v)

tmp2

(𝛿)
7

ADD
64

tmp1
(𝛾)

a

(𝛼)
tmp2

(𝛿)
ASG
64

src code snippet

𝛼

LIT64: 7

𝛼 𝛽

Quads
AST

Sub

Plus

AssignExp

Translation Implementation
AST Translation to 3AC

tmp1

(𝛾)
a

(𝛼)
SUB
64

v
(𝛽)

dst src1 opr src2lbl

tmp2

(𝛿)
7

ADD
64

tmp1
(𝛾)

a

(𝛼)
tmp2

(𝛿)
ASG
64

QuadsAt this point, we can discard
the AST

• New data structures for the
3AC representation:
• Quad class (with subclasses

for each quad type)

• Procedure class
• Contains list of quads

• Operand abstraction
(symbols)

tgt

src

Lecture End
3AC Translation

We’ve successfully flattened
the AST

• Got a nice target for final
code generation

• Removed the nesting

• Make execution order
explicit

Next time

• Start exploring the
compiler targets

29

C Rust Haskell

X64 MIPS WebASM

IR

The multicompiler concept
One IR for many sources, many targets

3AC in Summary
AST Translation to 3AC

30

A Nice Linear IR

• Gets us close to real hardware

• Abstract enough to be used in a
variety of backends

	Slide 1: 3AC Translation
	Slide 2: Last Time Intermediate Representations
	Slide 3: The List of Instruction Templates Review: Our 3AC Instructions
	Slide 4: 3AC: Exercise Another Example
	Slide 5: Compiler Construction Progress Pics
	Slide 6: Today’s Outline 3AC Translation
	Slide 7: Flattening the Tree AST Translation to 3AC
	Slide 8: Flattening the Tree AST Translation to 3AC
	Slide 9: Flattening the Tree AST Translation to 3AC
	Slide 10: Flattening The Tree: Example Traversing the AST
	Slide 11: A Brief Aside on Sequencing Traversing the AST
	Slide 12: A Brief Aside on Sequencing Traversing the AST
	Slide 13: A Brief Aside on Sequencing Traversing the AST
	Slide 14: Today’s Outline 3AC Translation
	Slide 15: Example Nodes Node to Quad Translations
	Slide 16: Translating AST Leaves (IDs and Lits) AST Translation to 3AC
	Slide 17: Translating AssignExp AST Translation to 3AC
	Slide 18: Translating BinaryOp Nodes AST Translation to 3AC
	Slide 19: Translating CallExpNodes AST Translation to 3AC
	Slide 20: Translating FnDeclNodes AST Translation to 3AC
	Slide 21: Translating ReturnStmtNodes AST Translation to 3AC
	Slide 22: Translating IfStmtNodes AST Translation to 3AC
	Slide 23: Translating While Loops AST Translation to 3AC
	Slide 24: Translating Index AST Translation to 3AC
	Slide 25: Today’s Outline 3AC Translation
	Slide 26: 3AC Data Structures AST Translation to 3AC: Implementation
	Slide 27: Translation Implementation AST Translation to 3AC
	Slide 28: Translation Implementation AST Translation to 3AC
	Slide 29: Lecture End 3AC Translation
	Slide 30: 3AC in Summary AST Translation to 3AC

