
Check-In
Review – Runtime Environments

1

Give an example of a language and its runtime environment

Announcements
Administrivia

2

Intermediate
Representations

University of Kansas | Drew Davidson

3

Last Time
Lecture Review – Runtime Environments

Runtimes

• Runtime Environments

• Hardware Intuition

4

Runtimes

You Should Know

• What a runtime environment is
• Basic notions of how we might

execute programs
• OS mediation
• Virtual machine
• Accessing memory / registers

5

COMPILER

Lexical
Analysis

SDD

Syntactic
Definiton

Parsing

Semantics

Optimization

Runtimes

Code
Generation

Intermediate
Code

Architecture

Intermediate
Representations

Today’s Outline
Lecture Outline – Intermediate Representations

Introduce IRs

• What they are

• How they’re used

Three Address Code (3AC)

• Introduction

• Inventory

6

Compiler Construction
Progress Pics

Done:

• Derived an AST,
augmented with types
and identifier symbols

• Ensured the program is
legal to the best of our
abilities

ToDo:

• Get that sucker to run!

Scanner
Lexical analysis

Parser
Syntactic analysis

Semantic analysis

Intermediate code
generation

IR optimization

Final Code
generation

Final code
optimization

Output code in T

Source code
(sequence of chars)

In progress

IRs: The Big Idea
Intermediate Representations

A big, basic concept

• “Encoding of a program”

• “The output of a compiler
frontend and input of a
compiler backend”

• “What a compiler knows
about a program”

• “A simpler language to
which the source
language is mapped”

8

Intermediate Representation Benefits
Introducing IRs

Abstraction

9

Analysis

• Decouple compiler frontend
from the backend

M source languages

N target languages

S1 S2 Sm

T1 T2 Tm…

…

Write M×N compilers

S1 S2 Sm

T1 T2 Tm…

…

IR

or M+N compiler modules

Intermediate Representation Benefits
Introducing IRs

Abstraction

10

Analysis

• Decouple compiler frontend
from the backend

• Break down source language
constructs over several small
steps towards target

Source
Language

IR1

IR2

Target
Language

Intermediate Representation Benefits
Introducing IRs

Abstraction

11

Analysis

• Decouple compiler frontend
from the backend

• Break down source language
constructs over several small
steps towards target

• Optimize programs

Improve…
• Runtime
• Memory usage
• Power usage
• Security

Intermediate Representation Benefits
Introducing IRs

Abstraction

12

Analysis

• Decouple compiler frontend
from the backend

• Break down source language
constructs over several small
steps towards target

• Optimize programs

• Predict faults

For example…
• typechecking

But isn’t this an

analysis on the AST?

Abstraction

13

Analysis

• Decouple compiler frontend
from the backend

• Break down source language
constructs over several small
steps towards target

• Optimize programs

• Predict faults

For example…
• typechecking

But isn’t this an

analysis on the AST?

ASTs are an example of an IR!!

We’ve been
talking
about IR for
a week!!

M. Night Shyamalan, famous for
(ill-considered) plot twists in
movies he writes/directs

Intermediate Representation Benefits
Introducing IRs

Classes of IR
Introducing IRs

Structural
• Abstract-Syntax Tree (AST)

• Abstract Syntax DAG

Linear
• Three-Address Code (3AC)

• Stack machine code

Hybrid
• Control-Flow Graph

14

Limitations of Trees
Introducing IRs

• AST is great for some
things, but not everything
• Doesn’t represent control

flow very well

• Compilers could go directly
from AST to machine code

• Let’s consider a different IR

15

Intermediate
Representations

Today’s Outline
Lecture Outline – Intermediate Representations

Introduce IRs

• What they are

• How they’re used

Three Address Code (3AC)

• Introduction

• Inventory

16

Introducing 3AC
3AC Description

A Simplified Instruction Set Architecture (ISA)

• A family of pseudocode notations

17

Like ASTs, there’s no canonical 3AC

We’re more interested in the general idea

Introducing 3AC
3AC Description

A Simplified Instruction Set Architecture (ISA)

• A family of pseudocode notations

• Memory model: infinite “symbolic store”

18

“Memory”

age 7

str abcd

4.2spd

arr 1 2 3

• Naming a variable adds a location
 in the store

• We’ll assume that the store can
handle scope

Introducing 3AC
3AC Description

A Simplified Instruction Set Architecture (ISA)

• A family of pseudocode notations

• Memory model: infinite “symbolic store”

• Instruction model: linear instructions divided into
procedures

19

Discrete code listings

From Variables to Locations (“locs”)
3AC Description

A loc is…

• An address in memory

• A container for a value

Use [] around loc to
denote value at that
location

• [a] is the “value at a”

20

(sort of like adding a pointer
 level into every access)

int a;

int * b;

a = 1;

*b = 2;

int * a;

int ** b;

*a = 1;

**b = 2;

3AC: What’s With the Name?
3AC Description

Instructions have at most 3 operands

21

[tmp1] := [c] * [d];

[tmp2] := [b] + [tmp1];

[tmp3] := [tmp2] – [e];

[a] := [tmp3];

a = b + c * d – e

becomes

3AC: Instruction Classes
3AC Description

Data flow

• Assignment

• Math/Logic

Control flow

• Labels

• Jumps

Interprocedural

• Boundaries

• Bodies

• Calls

22

<opd> := <opd>

Opd stands for “operand”
Literals, variables, etc.

Example:
[a] := 1

[b] := [a]

3AC: Instruction Classes
3AC Description

Data flow

• Assignment

• Math/Logic

Control flow

• Labels

• Jumps

Interprocedural

• Boundaries

• Bodies

• Calls

23

<opd> := <opd> <opr> <opd>

<opd> := <opr> <opd>

Opr stands for “operator”
MULT64, DIV64, SUB64, ADD64, etc.

Opd stands for “operand”
Literals, variables, etc.

Example:
[a] := 1 MULT64 2

[b] := [a] SUB64 4

3AC: Instruction Classes
3AC Description

Data flow

• Assignment

• Math/Logic

Control flow

• Labels

• Jumps

Interprocedural

• Boundaries

• Bodies

• Calls

24

nop

Example:
Label1: [a] := 1

Example:
Label1: nop

<lbl>: <instr>

3AC: Instruction Classes
3AC Description

Data flow

• Assignment

• Math/Logic

Control flow

• Labels

• Jumps

Interprocedural

• Boundaries

• Bodies

• Calls

25

ifz <opd> goto <lbl>

goto <lbl>

Example:
Label2: goto Label2

Example:
 ifz [a] goto Label1

 [a] := 1

Label1: [a] := 2

3AC: Instruction Classes
3AC Description

Data flow

• Assignment

• Math/Logic

Control flow

• Labels

• Jumps

Interprocedural

• Boundaries

• Bodies

• Calls

26

enter <proc>

leave <proc>

Example:
enter fn

[global] := 7

leave fn

3AC: Instruction Classes
3AC Description

Data flow

• Assignment

• Math/Logic

Control flow

• Labels

• Jumps

Interprocedural

• Boundaries

• Bodies

• Calls

27

getarg <idx> <opd>

Example:
enter fn

getarg 1, [a]

getarg 2, [b]

[a] := [b]

setret 42

leave fn

Example:
int fn(int a, int b){

 a = b;

 return 42;

}

setret <opd>

3AC: Instruction Classes
3AC Description

Data flow

• Assignment

• Math/Logic

Control flow

• Labels

• Jumps

Interprocedural

• Boundaries

• Bodies

• Calls

28

call <proc>

setarg <int> <opd>

getret <opd>

Example:
enter fn

getarg 1, [a]

getarg 2, [b]

[a] := [b]

setret 42

leave fn

Example:
int fn(int a, int b){

 a = b;

 return 42;

}

enter v

setarg 1, 7

setarg 2, 9

call fn

getret [k]

leave v

int v(){

 int k;

 k = fn(7, 9);

}

That’s All we Need!
3AC Description

We can build complex
behavior out of these
simple building blocks

• One minor loose end to
tie up…

29

Dealing with Scope
3AC Description

30

void fn(){

 int a;

 a = 9;

 if (true){

 int a;

 a = 6;

 }

}

enter fn

[a] := 9

 …

[a] := 6

 …

leave fn

Name

clash?

Only in notation!
These assignment connect to different symbols

We can use superscripts if needed

1

2

3AC Data Structures
AST Translation to 3AC – Implementation

• One class per 3AC node type
• Often referred to as “Quads” – has at most 4 fields (+ label)

• Each procedure maintains a list of its quads

31

[t1] [a]L1
SUB
64

2

dst src1 opr src2lbl

Translation Implementation
AST Translation to 3AC – Implementation

Propagate context to parent & generate 3AC instruction(s)

32

AssignExp

ID
val: a
Sym: 𝛼 IntLit

7
Sub

Plus

AssignStmt

ID
val: a
Sym: 𝛼

ID
val: v
Sym: 𝛽

t1

(𝛾)
a

(𝛼)
SUB
64

v
(𝛽)

dst src1 opr src2lbl

Symbol:
Kind: var
Type: int
Name: a

Symbol:
Kind: var
Type: int
Name: v

𝛼 𝛽 Symbol:
Kind: tmp
Type: int

Name: tmp1

𝛾 Symbol:
Kind: tmp
Type: int

Name: tmp2

𝛿

a = 7 + (a – v)

t2

(𝛿)
7

ADD
64

[t1]
(𝛾)

[a]

(𝛼)
[t2]
(𝛿)

[t1] := [a] SUB64 [v]

[t2] := 7 ADD64 [t1]

 [a] := [t2]

Next Time
3AC Translation

Translating AST code
into 3AC

• A final walk of the AST

33

3AC
AST

	Slide 1: Check-In Review – Runtime Environments
	Slide 2: Announcements Administrivia
	Slide 3: Intermediate Representations
	Slide 4: Last Time Lecture Review – Runtime Environments
	Slide 5
	Slide 6: Today’s Outline Lecture Outline – Intermediate Representations
	Slide 7: Compiler Construction Progress Pics
	Slide 8: IRs: The Big Idea Intermediate Representations
	Slide 9: Intermediate Representation Benefits Introducing IRs
	Slide 10: Intermediate Representation Benefits Introducing IRs
	Slide 11: Intermediate Representation Benefits Introducing IRs
	Slide 12: Intermediate Representation Benefits Introducing IRs
	Slide 13
	Slide 14: Classes of IR Introducing IRs
	Slide 15: Limitations of Trees Introducing IRs
	Slide 16: Today’s Outline Lecture Outline – Intermediate Representations
	Slide 17: Introducing 3AC 3AC Description
	Slide 18: Introducing 3AC 3AC Description
	Slide 19: Introducing 3AC 3AC Description
	Slide 20: From Variables to Locations (“locs”) 3AC Description
	Slide 21: 3AC: What’s With the Name? 3AC Description
	Slide 22: 3AC: Instruction Classes 3AC Description
	Slide 23: 3AC: Instruction Classes 3AC Description
	Slide 24: 3AC: Instruction Classes 3AC Description
	Slide 25: 3AC: Instruction Classes 3AC Description
	Slide 26: 3AC: Instruction Classes 3AC Description
	Slide 27: 3AC: Instruction Classes 3AC Description
	Slide 28: 3AC: Instruction Classes 3AC Description
	Slide 29: That’s All we Need! 3AC Description
	Slide 30: Dealing with Scope 3AC Description
	Slide 31: 3AC Data Structures AST Translation to 3AC – Implementation
	Slide 32: Translation Implementation AST Translation to 3AC – Implementation
	Slide 33: Next Time 3AC Translation

