
Check-In
Review - Parameters 
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Give an example of a program that would compile under both a pass-by-value and pass-by-
reference scheme but gives different output under both.



Announcements
Administrivia
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Runtimes

University of Kansas | Drew Davidson

3



Previous Lecture
Review - Parameters 

Vocabulary: 

• lval/rval

• Memory references

• Arguments

Parameter Passing

• Call by value

• Call by reference

• Call by value-result

• Call by name
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Semantics

You Should Know

• What the vocab terms are, how they’d appear in error 
messages

• The difference between formal arguments and actual 
arguments

• The semantic effect of call-by-value and call-by-
reference parameter passing schemes



Lecture Outline
Runtimes 

Runtimes

• Runtime Environments

• The semantic gap (again)

• Interpreters
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Semantics
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Switching Gears: Targets
Runtime Environments – Setup

Time to look at how code 
is actually run 

• For this we’ll need to 
understand execution 
systems (runtimes)
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Compilers: A Tasty Mix of Disciplines
Runtime Environments - Setup
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The compiler

Front-end:
• Automata theory
• Algorithms

Middle-end:
• Software engineering
• Program semantics

Back-end:
• Emulation
• Architecture



Relation to Compilers
Overview
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Compilers job (roughly): 
turn something from a non-executable format into
that same thing in an executable format

Hard to pin down!



The Tools of Execution
Overview
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Not this kind of execution!

Stepping back from compilers

What do we need for execute code?



Runtime Environment Working Defn.
Runtime Environments
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Underlying software and 
hardware configuration 
assumed by the program

• May include an OS (may not!)

• May include a virtual machine

May be co-designed with the 
programming language

Get it? “Run time”



Some Example Runtime Environments
Runtime Environments
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Audience Participation: What are some example 
languages / runtime environments they provide?



Wait, why DO we need a Compiler?
Runtime Environments
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“Obvious” Answer

• To implement a programming 
language

• To avoid dealing with target 
language directly

But is compilation the only option?

• Depends on your definition
A strawman



“Alternatives” to “Compilation”
Runtime Environments
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Defining Compilers
Introduce IRs
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Rely on 
scripting, 

skip compilation

Oxford languages dictionary



Then Why Compile at All?!?!?!? 
Introduce IRs
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Commence Existential Crisis? 

(y/n) 

> 



Then Why Compile at All?!?!?!? 
Introduce IRs

Abstraction

• Allow some distance 
from the target 
language
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Commence Existential Crisis? 

(y/n) 

> 

Analysis

• Error checking: predict 
bugs before they strike

• Optimization: generate 
better code statically

Rely on 
scripting, 

skip compilation

Write target 
code directly



“Alternatives” to “Compilation”
Runtime Environments
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Compiling ScriptingInterpreting

Source 
code text

Frontend

Machine 
code gen

SDT

IR code 
gen

Symbol 
Table

Source 
code text

Frontend

SDT

IR code 
gen

Symbol 
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Machine 
code

Minimal Platform
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Input
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Writing target code

Limitations that make large 
system building impractical

Not really an alternative



A Wider View of Compilation
Runtime Environments
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Our definition

“A translator from source code to 
target code”

- May alter the source language 
for tractability

- May  (or may not!) manipulate 
the target runtime for a variety 
of purposes



Another Semantic Gap
Runtime Environments

Difference between the specification in IR and executable

• Usually means shedding abstractions to concretize runnable code

20

Intermediate
Representation

Target Code
Source Code

“raise” / abstract “lower” / concretize



Bridging the Semantic Gap
Runtime Environments
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Source 
code

Target 
code

Compilation

Interpretation

We need code that is…

• Easy for humans to understand 

• Easy for computers to run

There are various approaches to 
span this divide

• Build a translator (compiler)

• Move the target (interpreter)



Target Platforms
Runtime Environments

Static workload depends on 
the platform we target

• Real hardware

• Virtual hardware

• Shell
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It’s a platform!



Heavyweight Runtimes
Runtime Environments
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Interpreted languages often 
relegate a lot of work to 
their runtime

• Why?

Runtime



Bytecode
Runtime Environments

24

An executable format that doesn’t 
target hardware!

Interpreter
Bytecode

instructions



Mediation Means Checking
Runtime Environments
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Many safety checks cannot 
be done until runtime



Virtual Machines
Runtime Environments
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Provide a runtime 
environment for the 
abstract instruction set!

Less ambitious than whole-system virtualization



Lightweight Runtimes
Runtime Environments
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Compiled languages often minimize their runtime

• Why?

Lighter than a feather!

Runtime



Mediation is Slow
Runtime Environments
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• For the most part, OS does not 
control program

• Compiler’s job to use the 
environment as best as possible

– This often means interfacing with 
the hardware architecture

Cuttin’ out the middle-man



The Role of the OS/VM
Runtime Environments
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Provides a platform for program

• System calls to access hardware

• “Illusion of uniqueness”

• Protects processes and system 
from each other OS

Program



Our Language
Runtime Environments
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We target machine code for two reasons (beyond the classic reasons)

1) Discharge the obligation of writing a virtual machine

2) Get to learn how X64 code works



Many Steps Towards Target Code 
Runtime Environments
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Rather than bridging the semantic 
gap in one step, transform the code 
in many baby steps

- Encourages modularity

- Accommodate analysis goals

ast

3ac

control
flow

graph

Target 
code



Summary
Runtime Environments – Wrap-up

• Defined runtime environments

– The implicit dependencies of a program 

– May not be real hardware

• The compilers job is to support program abstractions in the runtime

– For hardware platforms, these abstractions need to be simulated from memory, 
registers, and instruction sets

– For software platforms, the abstractions of the software may be designed to 
support the language



Next Time
Runtime Environments – Wrap-up

- Talk about intermediate representations more generally

- Begin discussing our next intermediate representation, three-address 
code
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