
Check-In
Review - Parameters

1

Give an example of a program that would compile under both a pass-by-value and pass-by-
reference scheme but gives different output under both.

Announcements
Administrivia

2

Runtimes

University of Kansas | Drew Davidson

3

Previous Lecture
Review - Parameters

Vocabulary:

• lval/rval

• Memory references

• Arguments

Parameter Passing

• Call by value

• Call by reference

• Call by value-result

• Call by name

4

Semantics

You Should Know

• What the vocab terms are, how they’d appear in error
messages

• The difference between formal arguments and actual
arguments

• The semantic effect of call-by-value and call-by-
reference parameter passing schemes

Lecture Outline
Runtimes

Runtimes

• Runtime Environments

• The semantic gap (again)

• Interpreters

5

Semantics

6

COMPILER

Regular
Languages

Syntactic
Definition

Lexical
Analysis

Parsing

Semantics

Execution

Runtimes

Optimization

Intermediate
Representation

Code
Generation

Switching Gears: Targets
Runtime Environments – Setup

Time to look at how code
is actually run

• For this we’ll need to
understand execution
systems (runtimes)

7

Compilers: A Tasty Mix of Disciplines
Runtime Environments - Setup

8

The compiler

Front-end:
• Automata theory
• Algorithms

Middle-end:
• Software engineering
• Program semantics

Back-end:
• Emulation
• Architecture

Relation to Compilers
Overview

9

Compilers job (roughly):
turn something from a non-executable format into
that same thing in an executable format

Hard to pin down!

The Tools of Execution
Overview

10

Not this kind of execution!

Stepping back from compilers

What do we need for execute code?

Runtime Environment Working Defn.
Runtime Environments

11

Underlying software and
hardware configuration
assumed by the program

• May include an OS (may not!)

• May include a virtual machine

May be co-designed with the
programming language

Get it? “Run time”

Some Example Runtime Environments
Runtime Environments

12

Audience Participation: What are some example
languages / runtime environments they provide?

Wait, why DO we need a Compiler?
Runtime Environments

13

“Obvious” Answer

• To implement a programming
language

• To avoid dealing with target
language directly

But is compilation the only option?

• Depends on your definition
A strawman

“Alternatives” to “Compilation”
Runtime Environments

14

Compiling ScriptingInterpreting

Source
code text

Frontend

Machine
code gen

SDT

IR code
gen

Symbol
Table

Source
code text

Frontend

SDT

IR code
gen

Symbol
Table

Source
code text

Machine
code

Minimal Platform
e.g. OS or bare metal

Input

Runtime
Env.

Frontend

result

SDT

Specialized Platform
e.g. shell or browser

Input

bytecode

Specialized Platform
e.g. Interpreter or VM

Input

Defining Compilers
Introduce IRs

15

Rely on
scripting,

skip compilation

Oxford languages dictionary

Then Why Compile at All?!?!?!?
Introduce IRs

16

Commence Existential Crisis?

(y/n)

>

Then Why Compile at All?!?!?!?
Introduce IRs

Abstraction

• Allow some distance
from the target
language

17

Commence Existential Crisis?

(y/n)

>

Analysis

• Error checking: predict
bugs before they strike

• Optimization: generate
better code statically

Rely on
scripting,

skip compilation

Write target
code directly

“Alternatives” to “Compilation”
Runtime Environments

18

Compiling ScriptingInterpreting

Source
code text

Frontend

Machine
code gen

SDT

IR code
gen

Symbol
Table

Source
code text

Frontend

SDT

IR code
gen

Symbol
Table

Source
code text

Machine
code

Minimal Platform
e.g. OS or bare metal

Input

Runtime
Env.

Frontend

result

SDT

Specialized Platform
e.g. shell or browser

Input

bytecode

Specialized Platform
e.g. Interpreter or VM

Input

Machine
code

Minimal Platform
e.g. OS or bare metal

Input

Writing target code

Limitations that make large
system building impractical

Not really an alternative

A Wider View of Compilation
Runtime Environments

19

Our definition

“A translator from source code to
target code”

- May alter the source language
for tractability

- May (or may not!) manipulate
the target runtime for a variety
of purposes

Another Semantic Gap
Runtime Environments

Difference between the specification in IR and executable

• Usually means shedding abstractions to concretize runnable code

20

Intermediate
Representation

Target Code
Source Code

“raise” / abstract “lower” / concretize

Bridging the Semantic Gap
Runtime Environments

21

Source
code

Target
code

Compilation

Interpretation

We need code that is…

• Easy for humans to understand

• Easy for computers to run

There are various approaches to
span this divide

• Build a translator (compiler)

• Move the target (interpreter)

Target Platforms
Runtime Environments

Static workload depends on
the platform we target

• Real hardware

• Virtual hardware

• Shell

22

It’s a platform!

Heavyweight Runtimes
Runtime Environments

23

Interpreted languages often
relegate a lot of work to
their runtime

• Why?

Runtime

Bytecode
Runtime Environments

24

An executable format that doesn’t
target hardware!

Interpreter
Bytecode

instructions

Mediation Means Checking
Runtime Environments

25

Many safety checks cannot
be done until runtime

Virtual Machines
Runtime Environments

26

Provide a runtime
environment for the
abstract instruction set!

Less ambitious than whole-system virtualization

Lightweight Runtimes
Runtime Environments

27

Compiled languages often minimize their runtime

• Why?

Lighter than a feather!

Runtime

Mediation is Slow
Runtime Environments

28

• For the most part, OS does not
control program

• Compiler’s job to use the
environment as best as possible

– This often means interfacing with
the hardware architecture

Cuttin’ out the middle-man

The Role of the OS/VM
Runtime Environments

29

Provides a platform for program

• System calls to access hardware

• “Illusion of uniqueness”

• Protects processes and system
from each other OS

Program

Our Language
Runtime Environments

30

We target machine code for two reasons (beyond the classic reasons)

1) Discharge the obligation of writing a virtual machine

2) Get to learn how X64 code works

Many Steps Towards Target Code
Runtime Environments

31

Rather than bridging the semantic
gap in one step, transform the code
in many baby steps

- Encourages modularity

- Accommodate analysis goals

ast

3ac

control
flow

graph

Target
code

Summary
Runtime Environments – Wrap-up

• Defined runtime environments

– The implicit dependencies of a program

– May not be real hardware

• The compilers job is to support program abstractions in the runtime

– For hardware platforms, these abstractions need to be simulated from memory,
registers, and instruction sets

– For software platforms, the abstractions of the software may be designed to
support the language

Next Time
Runtime Environments – Wrap-up

- Talk about intermediate representations more generally

- Begin discussing our next intermediate representation, three-address
code

	Slide 1: Check-In Review - Parameters
	Slide 2: Announcements Administrivia
	Slide 3: Runtimes
	Slide 4: Previous Lecture Review - Parameters
	Slide 5: Lecture Outline Runtimes
	Slide 6
	Slide 7: Switching Gears: Targets Runtime Environments – Setup
	Slide 8: Compilers: A Tasty Mix of Disciplines Runtime Environments - Setup
	Slide 9: Relation to Compilers Overview
	Slide 10: The Tools of Execution Overview
	Slide 11: Runtime Environment Working Defn. Runtime Environments
	Slide 12: Some Example Runtime Environments Runtime Environments
	Slide 13: Wait, why DO we need a Compiler? Runtime Environments
	Slide 14: “Alternatives” to “Compilation” Runtime Environments
	Slide 15: Defining Compilers Introduce IRs
	Slide 16: Then Why Compile at All?!?!?!? Introduce IRs
	Slide 17: Then Why Compile at All?!?!?!? Introduce IRs
	Slide 18: “Alternatives” to “Compilation” Runtime Environments
	Slide 19: A Wider View of Compilation Runtime Environments
	Slide 20: Another Semantic Gap Runtime Environments
	Slide 21: Bridging the Semantic Gap Runtime Environments
	Slide 22: Target Platforms Runtime Environments
	Slide 23: Heavyweight Runtimes Runtime Environments
	Slide 24: Bytecode Runtime Environments
	Slide 25: Mediation Means Checking Runtime Environments
	Slide 26: Virtual Machines Runtime Environments
	Slide 27: Lightweight Runtimes Runtime Environments
	Slide 28: Mediation is Slow Runtime Environments
	Slide 29: The Role of the OS/VM Runtime Environments
	Slide 30: Our Language Runtime Environments
	Slide 31: Many Steps Towards Target Code Runtime Environments
	Slide 32: Summary Runtime Environments – Wrap-up
	Slide 33: Next Time Runtime Environments – Wrap-up
	Slide 34

