~University of Kansas | Drew Davidson

\ .41
| BB
| - &

me n!ﬁr N
CONST cmm

7

Pa rameters,

Compiler Construction: Progress
You are here
{ (seqsuoeunrcfs g?gﬁars)]

v

(B

. . . Scanner
Continuing exploration of __Lexical analysis
language semantic features —

. . . Syntactic analysis
* Informs design/behavior of f ! \

Semantic analysis

our semantic analysis

\ 4
(N\
Intermediate code
generation

.

IR optimization

J

) (

\ 4
Final Code
generation

Final code
. optimization

[Output codeinT]

2

Last Time

Lecture Review — Error Checking

The Limits of Error Checking
* Halting problem

Partial Correctness

* Partial Correctness

* Soundness

* Completeness s

e
Semantics

Today’s Outline

Vocabulary
e |val/rval

* Memory references

e Calls
Parameter Passing

* Ca
* Ca
* Ca
* Ca

by value

by reference
by name

by value-result

Parameters

5>

A
Semantics

Vocabulary

Parameters

* Define a couple of terms
that are helpful to talk
about parameters

* We already encountered
some of these in passing

L and R Values

Parameters

e |-Value
* Avalue with a place of storage

e R-Value

* A value that may not have storage

Bad Use of R-Values

Parameters

* Can prevent programs that are valid in pass by value
from working in pass by reference
e Literals (for example) do not have locations in memory

* The type checker should catch these errors.

Memory References

Parameters

e Pointer
 Avariable whose value is a
memory address
* Aliasing
* When two or more variables
reference the same address

Calls

Parameters

Caller

* The source function
initiating the call

Callee

* The target function receiving
the call \
Call Site B

. L We’ve traced theicalll V4
* The location within the caller It's coming from inside the SNy

where the call happens

Calls

Parameters

Caller

* The source function
initiating the call

Callee

* The target function receiving
the call

Call Site

* The location within the caller
where the call happens

Call Chains

Call Graph

* A node-based
representation of
possible call structure

* Edge: caller -> callee
Call chain

* A realizable path of calls
(c,b,a)

Parameters

Arguments

Parameters

* In definition:
void v(int a, int b, bool c) { ... }

e Terms

* Formals / formal parameters /
parameters

e |In call:

v(a+b,8,true);
* Terms

* Actuals / actual parameters /
arguments

12

Parameter Passing Schemes

Parameters

o We'll talk about some different varieties
 Some of these are more used than others
e Each has advantages / uses

Pass by Value

Parameters

* On function call
* Values of actuals are copied into the formals
e Cand java always pass by value

void fun (int a) {

int a = 1;
}
void main () {
int 1 = 0;
fun (1) ;

print (1) ;

Pass by Reference

Parameters

* On function call
* The address of the actuals are implicitly copied

void fun (int a) {

a = 1;

}

void main () {
int 1 = 0;
fun (1) ;
print (1) ;

Language Examples

Parameters

* Pass by value
* C, Java, C#

* Pass by reference
e Allowed in C++ and Pascal

Java and C# Are Pass by Value?!

Parameters

* All non-primitive L-values are references

void fun(int a, Point p) {
a = 0;
pP.X = 57

}

volid main (
int 1 =
Point k
fun (i, k

) {
0;
= new Point(l, 2);

)

Pass by yaﬂueﬂ@suﬂt

 When function is called
* Value of actual is passed

* When function returns
* Final values are copied back to the actuals

e Used by Fortran IV, Ada
* As the language examples show, not very modern

Pass by Name

Parameters

e Conceptually works as follows:

 When a function is called
* Body of the callee is rewritten with the text of the argument
* Only really makes sense with non-local scope rules

* Like macrosin C/ C++

\l\“\ e

COMPILER

AV N MO AN e
1O 00 Yo

> — &)
“ Lexical 2

p— }

: Analy5|s "

;

