
Check-In
Review – Type Checking

Assume a program snippet has generated the following AST. Annotate each node with the
type it corresponds to (or error if it is an error type). If a type analysis would issue a report,
indicate that as well.

1

Administrivia
Housekeeping

2

Check-in

• Accidentally listed as a freebee?

Exam 2

• Friday of next week

Error Reporting

University of Kansas | Drew Davidson

3

Last Time
Lecture Review – Type Analysis

Semantics

4

Types

• What they are

• Why we have them

Type Rules

• Examples

Connecting operations to their types

• Enrich our static analysis pass

You Should Know

• The meaning of different
aspects of type systems

• The simple AST-based type
analysis

• How to propagate type errors

• We’d like all distinct errors at
the same time
• Don’t give up at the first error

• Don’t report the same error
multiple times

• When you get error as an
operand
• Don’t (re)report an error

• Again, pass error up the tree

5

Handling Errors
Type Analysis – Implementing Type Checking

int a;

bool b;

a = true + 1 + 2 + b;

b = 2;

6
BoolLit

true
IntLit

1

Plus IntLit
2

Plus

Plus

IdNode

type: bool
name: b

AssignExp

IdNode

type: int
name: a

AssignStmt AssignStmt

AssignExp

IdNode IntLit

StmtList

bool int

error int

REPORT

error bool

errorint

error

bool int

errorREPORT

Type Error Example
Type Analysis – Implementing Type Checking

REPORT

Today’s Outline
Lecture Overview – Error Reporting

Semantics

Error Checking

• What counts as a bad program?

• How do we detect bad programs?

Limits of Analysis

• The halting problem

7

Error Checking
Semantic Analysis

Goal: save programmers from
themselves

• It’s not enough to compile
the programmer’s code

• Need to figure out what
programmer meant to code

8

Quick Audience Poll
Semantics – Error Checking

Does this C program compile?

9

int a = 0;

int main(){

 if (0 == 1){

 b = 6;

 }

 return a;

}

Should this C code compile?

A Compiler’s Error-Checking Obligation
Semantics – Error Checking

10

Understandability / Consistency

Compiler As Mind Reader
Semantic Analysis – Broad View

11

A machine that infers your intent

Compiler as Complainer
Semantic Analysis – Broad View

12

A grumpy old man that yells at you for breaking the rules

The Compiler Before the Compiler
Semantic Analysis – Broad View

13

Semantic gap: difference between the description of
the same object in two different representation

Bug Hunting
Semantic Analysis – Broad View

How do we prevent
nonsense code from
executing?

• We’ll consider two ways
of analysis:
• Static

• Dynamic

14

Putting guardrails on computation

Compiler Perspective
Semantic Analysis – Broad View

Static

• Code analysis without
execution

Dynamic

• Code analysis through
execution

15

Checks done at compile time

Checks done at run time

Analysis part of the compiler

itself

Analysis embedded into the

program

Compiler Focus: Static Analysis
Semantic Analysis – Broad View

Doesn’t slow the program down
• Ok to take longer

• Ok to apply more heavyweight analysis

Has a “holistic” view of the program
• Has access to source code

• Knowledge of non-executed program paths

16

We’d LOVE to ensure bug-
free programs

• Observe and report bugs
before they are
encountered

Usually we can’t do this
• Limits of static analysis

17

Limits of Error Checking
Static Analysis

Theoretical argument

18

Limits of Static Analysis
Static Analysis

Practical argument

Does a computation ever
terminate?

19

The Halting Problem
Static Analysis

Given a description of a Turing machine

and its initial input, determine whether the

program, when executed on this input, ever

halts (completes). The alternative is that it
runs forever without halting

20

Sketching the Halting Problem
Static Analysis

Effective method for the
halting problem would say:
Return “true” if the program
halts on the given input
Return “false” if the program
never halts on the given input

White Magic

Any
program

True:
Program halts

False:
Program spins

Effective procedure

• a procedure that is
always yields a correct
result on any input

21

No Effective Method for Halting
Static Analysis

assume white_magic(Function p)
returns true if p halts, false if p does not

void black_magic(){

 if white_magic(black_magic){

 while true { }

 }

}
White Magic

True:
Program halts

False:
Program spins

Black Magic

White Magic

Blackmagic halts Blackmagic spins

spin return

Black Magic

22

Implications of the Halting Problem
Static Analysis

What does this have to do
with, say, a null pointer
analysis?

• No halting solution
means no reachability
solution

int * a = nullptr;

int main(){

 if (a != nullptr){

 *a = 1;

 }

 return a;

}

“All non-trivial semantic properties of programs are undecidable”

23

Rice’s Theorem
Static Analysis

24

Rice’s Theorem – Basic Idea
Static Analysis – Limits of Error Checking

int main(){

 if (black_magic()){

 int * p = 0;

 *p = 42;

 } else {

 return 0;

 }

}

What does this have to do
with, say, a null pointer
analysis?

• No halting means no
reachability

• We’d like to perfectly capture all bugs
• We can’t be right all of the time

• We can choose HOW we are wrong

25

Rice’s Theorem - Implications
Static Analysis – Limits of Error Checking

Theoretical argument

26

Limits of Static Analysis
Static Analysis

Practical argument

What if we only consider the universe of programs not written by *$%!-heads?

27

Practical Argument
Static Analysis

It’s really hard!

Let’s do some Sciency-Sounding Stuff
Static Analysis - Evaluation

28

Evaluating a Bug Detector
Static Analysis - Evaluation

29

Positive

Negative

True False

Has report

Has bug

No report

No bug

No bug
Has report

No report
Has bug

report
bug

No bug
report

Analysis is correct Analysis is wrong

Correct

Correct

Type I
Error

Type II
Error

30

Guarantees Under Imperfect Detection
Static Analysis – Limits of Error Checking

Consistency / Reliability super
important for users

We’d like to limit the kinds of
errors we report

We can choose which type of bug
report error to avoid

• Soundness: No false positives

• Completeness: No false negatives

31

Visual Analogy
Static Analysis – Limits of Error Checking

Imagine the universe of all
programs is contained in a circle

• You can draw a circle around the
programs you report as buggy

• The actual buggy programs
occupy a jagged region

All Programs

Buggy programs

Reported
bugs

32

All Programs All Programs

Complete bug detection

Reported
bugs

Soundness and Completeness
Static Analysis – Limits of Error Checking

All buggy programs get flagged
(No false negative problem)

Some correct programs get flagged
(has false positive problem)

False
Positive

Buggy programs Buggy programs

Reported
bugs

Sound bug detection

Some buggy programs pass through
(has false negative problem)

All correct programs pass through
(No false positive problem)

False
Negative

• Make best-effort procedures that are neither sound
nor complete

• We can analyze the result of a statement under
certain assumptions
• Assume that the statement is executed

• Assume that the statement actually completes

33

Partial Correctness
Static Analysis – Limits of Error Checking

	Slide 1: Check-In Review – Type Checking
	Slide 2: Administrivia Housekeeping
	Slide 3: Error Reporting
	Slide 4: Last Time Lecture Review – Type Analysis
	Slide 5: Handling Errors Type Analysis – Implementing Type Checking
	Slide 6: Type Error Example Type Analysis – Implementing Type Checking
	Slide 7: Today’s Outline Lecture Overview – Error Reporting
	Slide 8: Error Checking Semantic Analysis
	Slide 9: Quick Audience Poll Semantics – Error Checking
	Slide 10: A Compiler’s Error-Checking Obligation Semantics – Error Checking
	Slide 11: Compiler As Mind Reader Semantic Analysis – Broad View
	Slide 12: Compiler as Complainer Semantic Analysis – Broad View
	Slide 13: The Compiler Before the Compiler Semantic Analysis – Broad View
	Slide 14: Bug Hunting Semantic Analysis – Broad View
	Slide 15: Compiler Perspective Semantic Analysis – Broad View
	Slide 16: Compiler Focus: Static Analysis Semantic Analysis – Broad View
	Slide 17: Limits of Error Checking Static Analysis
	Slide 18: Limits of Static Analysis Static Analysis
	Slide 19: The Halting Problem Static Analysis
	Slide 20: Sketching the Halting Problem Static Analysis
	Slide 21: No Effective Method for Halting Static Analysis
	Slide 22
	Slide 23: Rice’s Theorem Static Analysis
	Slide 24: Rice’s Theorem – Basic Idea Static Analysis – Limits of Error Checking
	Slide 25: Rice’s Theorem - Implications Static Analysis – Limits of Error Checking
	Slide 26: Limits of Static Analysis Static Analysis
	Slide 27: Practical Argument Static Analysis
	Slide 28: Let’s do some Sciency-Sounding Stuff Static Analysis - Evaluation
	Slide 29: Evaluating a Bug Detector Static Analysis - Evaluation
	Slide 30: Guarantees Under Imperfect Detection Static Analysis – Limits of Error Checking
	Slide 31: Visual Analogy Static Analysis – Limits of Error Checking
	Slide 32: Soundness and Completeness Static Analysis – Limits of Error Checking
	Slide 33: Partial Correctness Static Analysis – Limits of Error Checking

