
Check-In
Review – Type Checking

Assume a program snippet has generated the following AST. Annotate each node with the 
type it corresponds to (or error if it is an error type). If a type analysis would issue a report, 
indicate that as well. 
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Administrivia
Housekeeping
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Check-in

• Accidentally listed as a freebee?

Exam 2

• Friday of next week



Error Reporting

University of Kansas | Drew Davidson
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Last Time
Lecture Review – Type Analysis

Semantics
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Types

• What they are

• Why we have them

Type Rules

• Examples

Connecting operations to their types

• Enrich our static analysis pass

You Should Know

• The meaning of different 
aspects of type systems

• The simple AST-based type 
analysis

• How to propagate type errors



• We’d like all distinct errors at 
the same time
• Don’t give up at the first error

• Don’t report the same error 
multiple times

• When you get error as an 
operand
• Don’t (re)report an error

• Again, pass error up the tree
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Handling Errors
Type Analysis – Implementing Type Checking



int a;

bool b;

a = true + 1 + 2 + b;

b = 2;

6
BoolLit

true
IntLit

1

Plus IntLit
2

Plus

Plus

IdNode

type: bool
name: b

AssignExp

IdNode

type: int
name: a

AssignStmt AssignStmt

AssignExp

IdNode IntLit

StmtList

bool int

error int

REPORT

error bool

errorint

error

bool int

errorREPORT

Type Error Example
Type Analysis – Implementing Type Checking

REPORT



Today’s Outline
Lecture Overview – Error Reporting

Semantics

Error Checking

• What counts as a bad program?

• How do we detect bad programs?

Limits of Analysis

• The halting problem
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Error Checking 
Semantic Analysis

Goal: save programmers from 
themselves

• It’s not enough to compile 
the programmer’s code

• Need to figure out what 
programmer meant to code
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Quick Audience Poll
Semantics – Error Checking

Does this C program compile?
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int a = 0;

int main(){

   if (0 == 1){

      b = 6;

   }

   return a;

}

Should this C code compile?



A Compiler’s Error-Checking Obligation
Semantics – Error Checking
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Understandability / Consistency



Compiler As Mind Reader
Semantic Analysis – Broad View
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A machine that infers your intent



Compiler as Complainer
Semantic Analysis – Broad View
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A grumpy old man that yells at you for breaking the rules



The Compiler Before the Compiler
Semantic Analysis – Broad View
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Semantic gap: difference between the description of 
the same object in two different representation



Bug Hunting
Semantic Analysis – Broad View

How do we prevent 
nonsense code from 
executing?

• We’ll consider two ways 
of analysis:
• Static

• Dynamic
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Putting guardrails on computation



Compiler Perspective
Semantic Analysis – Broad View

Static

• Code analysis without 
execution

Dynamic

• Code analysis through 
execution
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Checks done at compile time

Checks done at run time

Analysis part of the compiler 

itself

Analysis embedded into the 

program



Compiler Focus: Static Analysis
Semantic Analysis – Broad View

Doesn’t slow the program down
• Ok to take longer

• Ok to apply more heavyweight analysis

Has a “holistic” view of the program
• Has access to source code

• Knowledge of non-executed program paths
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We’d LOVE to ensure bug-
free programs

• Observe and report bugs 
before they are 
encountered

Usually we can’t do this
• Limits of static analysis
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Limits of Error Checking
Static Analysis



Theoretical argument
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Limits of Static Analysis
Static Analysis

Practical argument



Does a computation ever 
terminate?
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The Halting Problem
Static Analysis

Given a description of a Turing machine 

and its initial input, determine whether the 

program, when executed on this input, ever 

halts (completes). The alternative is that it 
runs forever without halting
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Sketching the Halting Problem
Static Analysis

Effective method for the 
halting problem would say:
Return “true” if the program 
halts on the given input
Return “false” if the program 
never halts on the given input

White Magic

Any 
program

True:
Program halts

False:
Program spins

Effective procedure

• a procedure that is 
always yields a correct 
result on any input
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No Effective Method for Halting
Static Analysis

assume white_magic(Function p) 
returns true if p halts, false if p does not

void black_magic(){

    if white_magic(black_magic){

        while true { }

    }

}
White Magic

True:
Program halts

False:
Program spins

Black Magic

White Magic

Blackmagic halts Blackmagic spins

spin return

Black Magic
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Implications of the Halting Problem
Static Analysis

What does this have to do 
with, say, a null pointer 
analysis?

• No halting solution 
means no reachability 
solution

int * a = nullptr;

int main(){

   if (a != nullptr){

      *a = 1;

   }

   return a;

}



“All non-trivial semantic properties of programs are undecidable”
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Rice’s Theorem
Static Analysis
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Rice’s Theorem – Basic Idea
Static Analysis – Limits of  Error Checking

int main(){

  if (black_magic()){

     int * p = 0;

     *p = 42;

  } else {

     return 0;

  }

}

What does this have to do 
with, say, a null pointer 
analysis?

• No halting means no 
reachability



• We’d like to perfectly capture all bugs
• We can’t be right all of the time 

• We can choose HOW we are wrong
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Rice’s Theorem - Implications
Static Analysis – Limits of  Error Checking



Theoretical argument
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Limits of Static Analysis
Static Analysis

Practical argument

What if we only consider the universe of programs not written by *$%!-heads?
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Practical Argument
Static Analysis

It’s really hard!



Let’s do some Sciency-Sounding Stuff
Static Analysis - Evaluation
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Evaluating a Bug Detector
Static Analysis - Evaluation
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Positive

Negative

True False

Has report

Has bug

No report

No bug

No bug
Has report

No report
Has bug

report
bug

No bug
report

Analysis is correct Analysis is wrong

Correct

Correct

Type I 
Error

Type II 
Error
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Guarantees Under Imperfect Detection
Static Analysis – Limits of  Error Checking

Consistency / Reliability super 
important for users

We’d like to limit the kinds of 
errors we report

We can choose which type of bug 
report error to avoid

• Soundness: No false positives

• Completeness: No false negatives
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Visual Analogy
Static Analysis – Limits of  Error Checking

Imagine the universe of all 
programs is contained in a circle

• You can draw a circle around the 
programs you report as buggy

• The actual buggy programs 
occupy a jagged region

All Programs

Buggy programs

Reported
bugs
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All Programs All Programs

Complete bug detection

Reported
bugs

Soundness and Completeness
Static Analysis – Limits of  Error Checking

All buggy programs get flagged 
(No false negative problem)

Some correct programs get flagged 
(has false positive problem)

False
Positive

Buggy programs Buggy programs

Reported
bugs

Sound bug detection

Some buggy programs pass through
(has false negative problem)

All correct programs pass through
(No false positive problem)

False
Negative



• Make best-effort procedures that are neither sound 
nor complete

• We can analyze the result of a statement under 
certain assumptions
• Assume that the statement is executed

• Assume that the statement actually completes
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Partial Correctness
Static Analysis – Limits of  Error Checking
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