i el B e
O U b W NP O W

O 1 oy U b LW DN

Check-in

Review: Semantic Analysis

int a;: Show the symbol table
bool f; After line 12 but before line 13
int m(int arg) {

int b;

return arg + 1;

int g () {
int c;
int d;
if (a) {
int d;
int f;
int g;

| | S
_ Unlver5|ty of Kansas | Drew DaV|dson -

cm crmn
Tpre systems.

Last Time

Semantic Analysis

»~— You should know ——

Name Analysis _
Name analysis
* Enforcing scope e What itis
Symbol Table . What. it does
- How it works
* What it is L)

e What it does

AT

Semantics

Lecture Outline

Type Systems

Discuss Type Systems

 What they are

* Why we use them

Type Specification

* Formally communicating type systems

Our type system (for the project) s

. .

Semantics

Specification vs Implementation

Discussing Type Systems

A big idea in compilers

* Thinking at different layers of
abstraction

* Types are a nice instance

(so were syntax and tokenization)
* Today: Specification

* Next time: Implementation l ‘

Recall: Aim of Semantic Analysis

Type Systems — Rationale

Deduce what the
programmer meant

* Philosophy: don’t let
bugs get by

* Give programmer means
to express intent

'ypes as Hints From Programmer

Type Systems — Rationale

Types Communicate
programmer intention

HELP ME-,
T

* Compiler can choose the
appropriate operation

 Compiler can tell if the
operations are sensible

HELP vou\

mcmogencrat:ﬂ net

What we Mean by “Type”

Type Systems

Short for “data type”

e Classification for various
kinds of data

* A set of possible values
which a variable can
POSSEess

May imply representation

(perhaps in memory)
* int32

type [tahyp]

class, kind

Synonyms for fype

brand
breed
category
character
description
form

group

lot

nature
number

sample

sort
standard
strain

variety
blazon

cast
classification
cut

feather
genre

ilk

SEE DEFINITION OF type

>

likes

mold

order
persuasion
rubric
species
specimen
stamp
subdivision

way

MOST RELEVANT

Type Systems: The Context for Types

Type Systems

Type System: lists types
and describes how they
may be used

* What operations that
can be done on
member values

* How type system may
be extended

10

Components of a Type System

Type Systems

* Base types and means of
building aggregate types

* int, bool, void, class, function,
struct, pointer, reference

* A means of determining if
types are compatible

e Can disparate types be
combined? How?

* Rules for inferring the type
of an expression

11

Type Rules

Type Systems

* For every operator (including assignment)...
- What types can the operand have?
- What type is the result?

* Example:
double a; <\:UL:E'
int b; 'S
a = D; LegalinJlava, C++

b = a; Legal in C+4+, Illegal in Java

Type Conversion

Type Systems

Defn: Using One Type as a
Different Type

* May require explicit
acknowledgement by user
(e.g. casting)

13

Type Coercion

Type Systems

Defn: Implicit cast from one
data type to another

1 #include <stdio.h>

2 int main(){
unsigned int a = 1;
int b = -1;
if (a * b < 0){

* For example:

inttounsigned 1int

printf("NEG");
T else {
printf("NON-NEG");

14

Type Promotion

Type Systems

A narrow form of coercion

 When destination type
can represent the source
type without loss of
precision

* float to double (ok)
e double to float (not ok)

A promotion ceremony

15

Subtyp ing

Type Systems

When a more narrow type can be used in place of a
another

* Explicit inheritance / class hierarchy

class Lunch

class Sandwich: class Soup:
public Lunch public Lunch

class Hotdog:
public Sandwich 16

Duck Typing

Type Systems

Defn: Type is defined by the methods and properties

“If it walks like a duck and talks like a duck, it’s a duck”

1
2
3
4
5
6
7
8

Duck Typing: Example

Type Systems

class Duck:

def quack(): print(“quack”)
class Rando:

def quack(): print(“QUACK”)

def processDuck(Duck d) { .. }
Rando r = new Rando();
processDuck(r);

18

Duck Punching

Type Systems

Defn: Type defined by the methods/properties at time
of use

“If it walks like a duck but isn’t giving you the noise you want,
punch it until it quacks. Now it’s a duck”

w

¢
A\

== ¢

Brief Aside: Duck Punching

Type Systems

Also sometimes called gorilla typing

guerilla (as in covert/secret) gorilla (sounds like guerilla)
~K4 wi = PN - oy it 1

- o
N 4 >

Duck Punching: Example

Type Systems

class Duck:

def quack(): print(“quack”)
class MechaBird:

def squak(): print(“101001..”)

def processDuck(Duck d) { .. }
MechaBird m = new MechaBird();
m.quack = m.squak;
processDuck(m) ;

1
2
3
4
5
6
7/
8
S

21

Let’s Talk about The Type System
Used in the Projects

Type Checking

Our Type System: Fundamentals

Type Checking

* Primitive Types
— int, bool, short, string, void
* Aggregate types
— pointers, functions
* Coercion
— Bool cannot be used as an int (nor vice-versa)

— Short can be promoted to int
— Int cannot be demoted to short

Our Type Rules

Our Type System

Arithmetic operators must have int or short
operands

Equality operators == and 1=
— Operands must have same type

* CANNOT be applied to functions
* CAN be applied to function results

Other relational operators must have int or
short operands

Logical operators must have bool operands

Type Errors |l

Our Type System

Assignment operator

— Must have operands of the same type

— Can’t be applied to functions
* Functions (but CAN be applied to function results)

For sending data to the console
— x must be an rval (usable on RHS of an assignment)

For reading data from the console
— x must be an lval (usable on LHS of an assignment)

Condition of if and condition of while must be
boolean

Type Errors [l

Our Type System

Invoking (calling) something that’s not a
function

Invoking a function with
— Wrong number of args
— Wrong type of args

Returning a value from a void function
Not returning a value in a non-void function

Returning a wrong type of value in a non-void
function

summary

Type Systems

Invoking (calling) something that’s not a
function

Invoking a function with
— Wrong number of args
— Wrong type of args

Returning a value from a void function
Not returning a value in a non-void function

Returning a wrong type of value in a non-void
function

Upcoming Project: P3

Type Systems

Implement name analysis

29

Formalizing Type Systems

Detour: Ungraded Material

Representing lype Systems

Formal Type Systems

Particular formalism: Judgements + rules
Judgements:
'3

3 is an assertion;

Rules:

|

DETOUR

4

Free variables in § are declared in T

(rule name)

ey, .. ILES, _
(annotations)

'3

DETOUR

4

Judgements |

Formal Type Systems

1" - S 3 is an assertion;
Free variables in J are declared in I’

'FM: A
@ F true : bool

D, x:int+x+1:int

32

[DETOUR

4

Rules

Formal Type Systems

(rule name)
ey, ... ILES,

'3
PTTTTTT T T Example type rules --------===========---------oooooo-oo !
(Env) (Val 1) (Val +)
[9 [HM:int [' HN:int
DO [- 1:int [- M+N:int

33

4

DETOUR
Proof Trees
Formal Type Systems
D 0 By (Env @) 3 - 0 By (Env @)
@ F 1l:int By(vall) @ 1:int By(vall)
@ - 1+1:int By (Val +)
PTTTTTT T T Example type rules --------===========---------oooooo-oo !
(Env Q) (Val 1) (Val +)
' 0 [WFM:int I FN:int
DO [- 1:int [- M+N:int

34

DETOUR

N

Well-Typedness |

Formal Type Systems

A way to express that the program can be correctly typed

Basic Scheme

e State rules for Hypothetical proof tree
ottt oo WENO Gy miEwd
Well difi @ + 1:int By (val1) ® - 1:int By (val1)

e e @ + 1+1:int By (Val +)

can be placed at
root of a
complete proof
tree

DETOUR

4

Example Type Rules |

Formal Type Systems

(val arr-len)

'-E:T[]
I' - E.length : int

(val arr-elt)
'-E,: T[] ' E,;:int
[+ E([E]:T

(val arr-alloc)
[' - E:int
I' - new T|E]: T[]

36

Example Type Rules

Formal Type Systems

(val stmt)

'FE:T
I' - S:void

Where statement S
contains only expression E

|

DETOUR

4

37

Example Type Rules

Formal Type Systems

(val sequence)

'-S5;:T, (S, .58): T

n

F'-(S5458,..58.) T,

|

DETOUR

4

38

Example Type Rules

Formal Type Systems

(val declaration)

T'E:T [id: T +(S,; ...;Sn): T

+(G(d: T=E;S,; ..;Sn): T

|

DETOUR

4

39

Example Type Rules

Formal Type Systems

(val fn-call)

|

DETOUR

4

[+E;:T, X-XE:Tn->Tr T FrE:Ti(i€1l.n)

I'-E(E;, ...,En): Tr

40

Formal Type Systems

End Detour: Done with Ungraded Material

