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Review - LR Parsers

Describe the difference between an LL(1) and LR(1) parser. Which is more powerful? 
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Housekeeping
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LR Parsers

Parsing

LR Parsers
• Concept
• Theory 
• Operation
2 Amazin’ facts:
• All viable prefixes for an LR 

grammar can be captured by a 
Finite State Automaton!

• A stack of states can track our 
position

You Should Know

• How an LR Parser differs from an LL Parser
• Vaguely what the parser automaton does



LR Parser Construction
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Correct Parse Tree

Grammar G
❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

R ❹

-

- R ❶I0

P
I1

I2

id

R ❸I4

R ❷I5

I3

I6

L )

id

G Parser Automaton

R ❹I6

G Parser Automaton

Correct Parse Tree

P

( L )

S’

L id

idL

id

id

id

L

(

L

May have multiple branches in flight 
at the same time

Operations
• Shift – ingest the lookahead token

• Reduce – digest branches
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SLR Parsing

• Delay committing to a 
parent production until all 
children have been seen

• The stack tracks automaton 
states… but what do those 
states really mean?

Correct Parse TreeCorrect Parse Tree

P

( L )

S’

L id

idL

id

id

id

L

(

L

I0 id

I2

Item 
Stack

Next 
Token

T2



Some LR Context

• Peek inside the automaton

Build parser automaton

• Closure set

• GoTo set

Put Parser into Table form

• Action types

7

SLR Parsing

Parsing
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SLR Parsing

An item represents progress 
through a production

• What constitutes an item 
depends on LR parser type

• FSM states are sets of items

Z ⟶ α ● X β 

“Basic” item form

In a Z production
Already seen symbol(s) α
About to produce symbol X
After X, will produce symbols(s) β

Grammar G
❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

-

R ❹

-

- R ❶I0
P

I1

(

I2

id

R ❸I4

R ❷I5

I3

I6

L )

id

G Parser Automaton

P → (● L )
L → ● id
L → ● L id

L → id ●

P → ( L ● )
L → L ● id

L → L Id ●

P

(

id

L

P → ( L ) ●

)

id

S’ → P ●S’ → ● P
P → ● ( L )

I0 I1

I2

I4 I6

I3

I5

G Parser Automaton (item sets shown)



An item represents progress 
through a production

• What constitutes an item 
depends on LR parser type

• FSM states are sets of items
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SLR Parsing

Z ⟶ α ● X β, t/u/v 

“Heavyweight” item form

As above, but lookahead 
token could be t or u or v

The heavyweight 
form seems more 

powerful 

What could possibly 
go wrong?

Z ⟶ α ● X β 

“Basic” item form

In a Z production
Already seen symbol(s) α
About to produce symbol X
After X, will produce symbols(s) β
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LR Parser Construction

Bad news: The FSM can become impractically large



Different Types of LR 
parsers:
• LR(1) “canonical LR”
• LALR
• SLR
• LR(0)
Automaton works the same 
way
• Size of automaton varies
• Bigger automata are more 

precise

11

Basic LR Parser Construction

Our focus
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SLR Parsing

Parsing

Some LR Context

Build parser automaton

• Closure set

• GoTo set

Put Parser into Table form

• Action types
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Grammar

Parser Automaton
State 

Diagram
Closure 

Sets
GoTo
Sets

Action 
Table

GoTo
Table

Transition OperationsInput

Define the states of 
the automaton

Define the edges of 

the automaton
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Grammar

Parser Automaton
State 

Diagram
Closure 

Sets
GoTo
Sets

Action 
Table

GoTo
Table

Transition OperationsInput

Building Closure(I)
Add I and repeat until saturation:

if X ⟶ α ● Z β is in Closure(I):
for all Z ::= γ productions:

add Z ⟶ ● γ

“What other items look 
like I to the parser?”



Grammar

Parser Automaton
State 

Diagram
Closure 

Sets
GoTo
Sets

Action 
Table

GoTo
Table

Transition OperationsInput
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Building GoTo relation from Ij

if (X ⟶ α ● ො𝜋 β is in Ij)
set GoTo(Ij, ො𝜋) = Ik where 

Ik = Closure(X ⟶ α ො𝜋 ● β ) 

If we were in a state I item, 
where might we be after parsing ො𝜋? 



Grammar

Parser Automaton
State 

Diagram
Closure 

Sets
GoTo
Sets

Action 
Table

GoTo
Table

Transition OperationsInput
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P → (● L )
L → ● id
L → ● L id

L → id ●

P → ( L ● )
L → L ● id

L → L Id ●

P

(

id

L

P → ( L ) ●

)

id

S’ → P ●S’ → ● P
P → ● ( L )

I0 I1

I2

I4
I6

I3

I5



Grammar

Parser Automaton
State 

Diagram
Closure 

Sets
GoTo
Sets

Action 
Table

GoTo
Table

Transition OperationsInput
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LR Automaton Construction
Add new start S’ and S’ → S
Build State I0 for Closure( {S’ → ● S} ) 
Saturate FSM:

for each symbol ො𝜋 s.t. item in state j 
contains A → 𝛼 ● ො𝜋 𝛽:

add transition from state j to 
the state for GoTo(j, X)
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SLR Parsing

closure
{ S’ → ● P }

Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

Grammar G
❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

Start with the I0 state 

Identify state
Closure({ S’ → ● P}) 

=
S’ → ● P
(∀ P ::= ● γ)
P → ● ( L )
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SLR Parsing

Add Edges:
GoTo(I0, P) = closure({ S’ → P ● })
GoTo(I0, ( ) = closure({P → ( ● L ) })

Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

Grammar G
❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

closure
{ S’ → P ● }

closure
{ P → ( ● L )

P

(

S’ → ● P
I0

P → ● ( L )

Start with the I0 state 

Identify state
Closure({ S’ → ● P}) 

=
S’ → ● P
(∀ P ::= ● γ)
P → ● ( L )
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SLR Parsing

closure
{ S’ → P ● }

Identify state
Closure({ S’ → P ● }) 

=
{ S’ → P ● } 
(nothing else)

Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

Grammar G
❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

closure
{ P → ( ● L )

P

(

S’ → ● P
I0

P → ● ( L )
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SLR Parsing

Identify edges from I1

(none)

Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

Grammar G
❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

closure
{ P → ( ● L )

P

(

S’ → ● P
I0 S’ → P ●

I1

P → ● ( L )

Identify state
Closure({ S’ → P ● }) 

=
{ S’ → P ● } 
(nothing else)
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SLR Parsing

Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

Grammar G
❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

closure
{ P → ( ● L )

P

(

S’ → ● P
I0 S’ → P ●

I1

P → ● ( L )

Identify state
Closure({ P → ( ● L ) }) 

=
P → ( ● L )

L → ● id
L → ● L id



Edges out of I2

GoTo(I2, id ) = closure({L → id ● })

GoTo(I2, L) = closure
P → ( L ● ),
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Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● ( L )
Grammar G

❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L )
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L → L ● id

closure
{ L → id ● }

closure
P → ( L ● ),
L → L ● id

L

id

Identify state
Closure({ P → ( ● L ) }) 

=
P → ( ● L )

L → ● id
L → ● L id
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Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● ( L )
Grammar G

❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L )
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

closure
{ L → id ● }

closure
P → ( L ● ),
L → L ● id

L

id

Identify state

closure
P → ( L ● ),

=
P → ( L ● )
L → L ● id

(nothing else)

L → L ● id
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Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● ( L )
Grammar G

❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L )
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

closure
{ L → id ● }

L

id

P → ( L ● )
L → L ● id

I3

Identify state

closure
P → ( L ● ),
L → L ● id

=
P → ( L ● )
L → L ● id

(nothing else)
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Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● ( L )
Grammar G

❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L )
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L

id

P → ( L ● )
L → L ● id

I3

closure
{ P → ( L ) ●

)

closure
{ L → id ● }

Edges out of I3

GoTo(I3, ) ) = closure({P → ( L ) ● })
GoTo(I3, id) = closure({L → L id ● })

closure
{ L → L id ● )

id

Identify state

closure
P → ( L ● ),
L → L ● id

=
P → ( L ● )
L → L ● id

(nothing else)
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Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● ( L )
Grammar G

❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L )
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

closure
{ L → id ● }

L

id

P → ( L ● )
L → L ● id

I3

Identify state
Closure({ L → id ● }) 

=
L → id ●

closure
{ P → ( L ) ●

)

closure
{ L → L id ● )

id
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Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● ( L )
Grammar G

❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L )
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L → id ●
I4

L

id

P → ( L ● )
L → L ● id

I3

closure
{ P → ( L ) ●

)

closure
{ L → L id ● }

id

Identify state
Closure({ L → id ● }) 

=
L → id ●

No edges out of I4
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Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● ( L )
Grammar G

❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L )
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L → id ●
I4

L

id

P → ( L ● )
L → L ● id

I3

closure
{ P → ( L ) ●

)

closure
{ L → L id ● }

id

Identify state
Closure({ P → ( L ) ● }) 

=
P → ( L ) ●

(nothing else)
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Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● ( L )
Grammar G

❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

Identify state
Closure({ P → ( L ) ● }) 

=
P → ( L ) ●

(nothing else)

P → (● L )
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L → id ●
I4

L

id

P → ( L ● )
L → L ● id

I3

)

closure
{ L → L id ● }

id

P → ( L ) ●
I5

No edges out of I5
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Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● ( L )
Grammar G

❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

Identify state
Closure({ L → id ● }) 

=
L → id ●

(nothing else)

P → (● L )
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L → id ●
I4

L

id

P → ( L ● )
L → L ● id

I3

)

closure
{ L → L id ● }

id

P → ( L ) ●
I5



No edges out of I6
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Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● ( L )
Grammar G

❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L )
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L → id ●
I4

L

id

P → ( L ● )
L → L ● id

I3

)

L → L id ●
I6

id

P → ( L ) ●
I5

Identify state
Closure({ L → id ● }) 

=
L → id ●

(nothing else)
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Closure(I):
Begin with I 
Repeat until saturation:

if X → α ● Z β ϵ Closure(I): 
∀ Z ::= γ, add  Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S}) 
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● ( L )
Grammar G

❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L )
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents    

Closure of all items 
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L → id ●
I4

L

id

P → ( L ● )
L → L ● id

I3

)

L → L id ●
I6

id

P → ( L ) ●
I5

Automaton Complete!
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LR Parser Construction

Grammar

Parser Automaton
State 

Diagram
Closure 

Sets
GoTo
Sets

Action 
Table

GoTo
Table

Transition OperationsInput

P

(

S’ → ● P
I0

P → ● ( L )
Grammar G

❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

S’ → P ●
I1

P → (● L )
L → ● id
L → ● L id

I2

L → id ●
I4

L

id

P → ( L ● )
L → L ● id

I3

)

L → L id ●
I6

id

P → ( L ) ●
I5
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LR Parser Construction

( ) id eof

I0

I1

I2

I3

I4

I5

I6

Action Table 

Row: Item 

Column: Symbol

P → (● L )
L → ● id
L → ● L id

L → id ●

P → ( L ● )
L → L ● id

L → L Id ●

P

(

id

L

P → ( L ) ●

)

id

S’ → P ●S’ → ● P
P → ● ( L )

I0 I1

I2

I4
I6

I3

I5

GoTo Table

P L
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LR Parser Construction

Types of Actions (hence, table cell entries):

• Shift (terminal edge), push 1 state, advance lookahead

• Reduce (reduce state), pop RHS stack items

• GoTo (nonterminal edge), push LHS item following reduce

• (Special actions: accept / reject)

Item 
Stack

Next 
Token

I0 )

I3

I2

I6

Item 
Stack

Next 
Token

I0

I3

I2

I6
R❹ to L

New top

)

Item 
Stack

Next 
Token

I0

I3

I2

)

Item 
Stack

Next 
Token

I0

I3

I2

eof

I5

Terminal edge 
I3,id→I6

Accepting state
Pop 2 items

Nonterminal edge
I2,L →I3

Terminal edge
I3,) →I5

I0 id

I3

I2

Item 
Stack

Next 
Token

T3
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LR Parser Construction

Grammar

Parser Automaton
State 

Diagram
Closure 

Sets
GoTo
Sets

Action 
Table

GoTo
Table

Transition OperationsInput

SLR Building algorithm
For each edge Ij, 𝜏 = Ik in the FSM:

if 𝜏 is a terminal: set Action[Ij, 𝜏] = shift Ik

if 𝜏 is a nonterminal: set GoTo[Ij, 𝜏] = Ik

If state Ij includes item S’ → S ●
set Action[Ij, eof] = accept

If state Ij includes item A → α ● where A is not S’
for each t in FOLLOW(A):

set Action[Ij,t] = reduce by A → α
All other entries are error actions

shift

go to

accept

reduce



38

LR Parser Construction

( ) id eof

I0

I1

I2

I3

I4

I5

I6

I2

I4

I5
I6

Action Table 

4 Types of Table entries

Shift, GoTo, Accept, Reduce

P → (● L )
L → ● id
L → ● L id

L → id ●

P → ( L ● )
L → L ● id

L → L Id ●

P

(

id

L

P → ( L ) ●

)

id

S’ → P ●S’ → ● P
P → ● ( L )

I0 I1

I2

I4
I6

I3

I5

GoTo Table

P L

I1

I3

Standard DFA 

Translation

Grammar G
❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id
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LR Parser Construction

( ) id eof

I0

I1

I2

I3

I4

I5

I6

I2

I4

I5
I6

Action Table 

4 Types of Table entries

Shift, GoTo, Accept, Reduce

P → (● L )
L → ● id
L → ● L id

L → id ●

P → ( L ● )
L → L ● id

L → L Id ●

P

(

id

L

P → ( L ) ●

)

id

S’ → P ●S’ → ● P
P → ● ( L )

I0 I1

I2

I4
I6

I3

I5

GoTo Table

P L

I1

I3

Mark state(s) 

with S’ → S ●
as accept

Grammar G
❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id ☺
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LR Parser Construction

( ) id eof

I0

I1

I2

I3

I4

I5

I6

I2

I4

I5
I6

Action Table 

4 Types of Table entries

Shift, GoTo, Accept, Reduce

P → (● L )
L → ● id
L → ● L id

L → id ●

P → ( L ● )
L → L ● id

L → L Id ●

P

(

id

L

P → ( L ) ●

)

id

S’ → P ●S’ → ● P
P → ● ( L )

I0 I1

I2

I4
I6

I3

I5

GoTo Table

P L

I1

I3

Grammar G
❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

R❸ R❸

R❷

R❹ R❹

☺

We reduce when 
we reach the

end of a rule…
Choosing when to 

reduce distinguishes 
the parser type

R❸ R❸ R❸ R❸

R❷ R❷R❷R❷ R❷

R❹ R❹ R❹ R❹

Simplest Version – LR(0): reduce whenever 
the state is reached
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LR Parser Construction

( ) id eof

I0

I1

I2

I3

I4

I5

I6

I2

I4

I5
I6

Action Table 

4 Types of Table entries

Shift, GoTo, Accept, Reduce

P → (● L )
L → ● id
L → ● L id

L → id ●

P → ( L ● )
L → L ● id

L → L Id ●

P

(

id

L

P → ( L ) ●

)

id

S’ → P ●S’ → ● P
P → ● ( L )

I0 I1

I2

I4
I6

I3

I5

GoTo Table

P L

I1

I3

Grammar G
❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

R❸ R❸

R❷

R❹ R❹

☺

R❸ R❸ R❸ R❸

R❷ R❷R❷R❷ R❷

R❹ R❹ R❹ R❹

Simplest Version – LR(0): reduce whenever 
the state is reached

What’s the problem?

Table 
Collisions
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LR Parser Construction

a eof

I0

I1

I2

I3

I2

I3

Action 

4 Types of Table entries

Shift, GoTo, Accept, Reduce

X → a ● X
X → a ●
X → ● a X
X → ● a

X → a X ●

X

a

X

S’ → X ●
S’ → ● X
X → ● a X
X → ● a

I0 I1

I2
I3

GoTo

X

I1

☺

a

I2

R❷R❷R❷

R❸ R❸ R❸

Simplest Version – LR(0): reduce whenever 
the state is reached

What’s the problem?

Table 
Collisions

Grammar G
❶ S’ ::= X
❷ X  ::= a X
❸ X ::= a
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LR Parser Construction

a eof

I0

I1

I2

I3

I2

I3

Action 

4 Types of Table entries

Shift, GoTo, Accept, Reduce

GoTo

X

I1

Grammar G
❶ S’ ::= X
❷ X  ::= a X
❸ X ::= a

☺

I2

R❷R❷R❷

R❸ R❸ R❸

X

a

Parse Trees

a

X

X

a

❷

❸

❷

Simplest Version – LR(0): reduce whenever 
the state is reached

X → a ● X
X → a ●
X → ● a X
X → ● a

X → a X ●

X

a

X

S’ → X ●
S’ → ● X
X → ● a X
X → ● a

I0 I1

I2
I3

a

What’s the problem?

Table 
CollisionsBetter

FOLLOW set allows it

SLR
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LR Parser Construction

a eof

I0

I1

I2

I3

I2

I3

Action 

4 Types of Table entries

Shift, GoTo, Accept, Reduce

GoTo

X

I1

Grammar G
❶ S’ ::= X
❷ X  ::= a X
❸ X ::= a

☺

I2

R❷R❷R❷

R❸ R❸ R❸

X

a

Parse Trees

a

X

X

a

❷

❸

❷

Simplest Version – LR(0): reduce whenever 
the state is reached

X → a ● X
X → a ●
X → ● a X
X → ● a

X → a X ●

X

a

X

S’ → X ●
S’ → ● X
X → ● a X
X → ● a

I0 I1

I2
I3

a

Better

FOLLOW set allows it

SLR

if state Ij has A → α ● where A ≠ S’
for each t in FOLLOW(A):

Action[Ij,t] = reduce by A ::= α

FOLLOW(X) =  { eof }
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LR Parser Construction

( ) id eof

I0

I1

I2

I3

I4

I5

I6

S I2

S I4

S I5
S I6

Action Table 

4 Types of Table entries

Shift, GoTo, Accept, Reduce

P → (● L )
L → ● id
L → ● L id

L → id ●

P → ( L ● )
L → L ● id

L → L Id ●

P

(

id

L

P → ( L ) ●

)

id

S’ → P ●S’ → ● P
P → ● ( L )

I0 I1

I2

I4
I6

I3

I5

GoTo Table

P L

I1

I3

if state Ij has A → α ● where A ≠ S’
for each t in FOLLOW(A):

Action[Ij,t] = reduce by A ::= α

Grammar G
❶ S’ ::= P
❷ P  ::= ( L ) 
❸ L ::= id
❹ L ::= L id

FOLLOW(L) =  { ), id }
FOLLOW(P) = { eof }

R❸ R❸

R❷

R❹ R❹

☺

Better Version – SLR: reduce whenever 
FOLLOW set allows it
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LR Parser Construction

Constructing a new type of parser, the LR

• For all LR parsers: 
– build closure and goto sets

– Build the parser automaton

– Tableize it

• For some LR parsers:
– What “closure set” and “goto set” mean is different

– Tabelizing changes (SLR uses FOLLOW sets to Reduce)

– There are more advanced LR parsers with more elaborate 
closure and goto sets (we won’t cover them)
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Preview - Scope

Finally done with parsing!
• Done with the frontend of the compiler!
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Preview - Scope

Finishing up some final details of the LR Parser

• Running the table-based parser

• Bottom-up SDT

After that, all done with parsing!

• Done with the frontend of the compiler
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