
1

Review - LR Parsers

Describe the difference between an LL(1) and LR(1) parser. Which is more powerful?

University of Kansas | Drew Davidson

3

Housekeeping

4

LR Parsers

Parsing

LR Parsers
• Concept
• Theory
• Operation
2 Amazin’ facts:
• All viable prefixes for an LR

grammar can be captured by a
Finite State Automaton!

• A stack of states can track our
position

You Should Know

• How an LR Parser differs from an LL Parser
• Vaguely what the parser automaton does

LR Parser Construction

5

Correct Parse Tree

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

R ❹

-

- R ❶I0

P
I1

I2

id

R ❸I4

R ❷I5

I3

I6

L)

id

G Parser Automaton

R ❹I6

G Parser Automaton

Correct Parse Tree

P

(L)

S’

L id

idL

id

id

id

L

(

L

May have multiple branches in flight
at the same time

Operations
• Shift – ingest the lookahead token

• Reduce – digest branches

6

SLR Parsing

• Delay committing to a
parent production until all
children have been seen

• The stack tracks automaton
states… but what do those
states really mean?

Correct Parse TreeCorrect Parse Tree

P

(L)

S’

L id

idL

id

id

id

L

(

L

I0 id

I2

Item
Stack

Next
Token

T2

Some LR Context

• Peek inside the automaton

Build parser automaton

• Closure set

• GoTo set

Put Parser into Table form

• Action types

7

SLR Parsing

Parsing

8

SLR Parsing

An item represents progress
through a production

• What constitutes an item
depends on LR parser type

• FSM states are sets of items

Z ⟶ α ● X β

“Basic” item form

In a Z production
Already seen symbol(s) α
About to produce symbol X
After X, will produce symbols(s) β

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

-

R ❹

-

- R ❶I0
P

I1

(

I2

id

R ❸I4

R ❷I5

I3

I6

L)

id

G Parser Automaton

P → (● L)
L → ● id
L → ● L id

L → id ●

P → (L ●)
L → L ● id

L → L Id ●

P

(

id

L

P → (L) ●

)

id

S’ → P ●S’ → ● P
P → ● (L)

I0 I1

I2

I4 I6

I3

I5

G Parser Automaton (item sets shown)

An item represents progress
through a production

• What constitutes an item
depends on LR parser type

• FSM states are sets of items

9

SLR Parsing

Z ⟶ α ● X β, t/u/v

“Heavyweight” item form

As above, but lookahead
token could be t or u or v

The heavyweight
form seems more

powerful

What could possibly
go wrong?

Z ⟶ α ● X β

“Basic” item form

In a Z production
Already seen symbol(s) α
About to produce symbol X
After X, will produce symbols(s) β

10

LR Parser Construction

Bad news: The FSM can become impractically large

Different Types of LR
parsers:
• LR(1) “canonical LR”
• LALR
• SLR
• LR(0)
Automaton works the same
way
• Size of automaton varies
• Bigger automata are more

precise

11

Basic LR Parser Construction

Our focus

12

SLR Parsing

Parsing

Some LR Context

Build parser automaton

• Closure set

• GoTo set

Put Parser into Table form

• Action types

13

Grammar

Parser Automaton
State

Diagram
Closure

Sets
GoTo
Sets

Action
Table

GoTo
Table

Transition OperationsInput

Define the states of
the automaton

Define the edges of

the automaton

14

Grammar

Parser Automaton
State

Diagram
Closure

Sets
GoTo
Sets

Action
Table

GoTo
Table

Transition OperationsInput

Building Closure(I)
Add I and repeat until saturation:

if X ⟶ α ● Z β is in Closure(I):
for all Z ::= γ productions:

add Z ⟶ ● γ

“What other items look
like I to the parser?”

Grammar

Parser Automaton
State

Diagram
Closure

Sets
GoTo
Sets

Action
Table

GoTo
Table

Transition OperationsInput

15

Building GoTo relation from Ij

if (X ⟶ α ● ො𝜋 β is in Ij)
set GoTo(Ij, ො𝜋) = Ik where

Ik = Closure(X ⟶ α ො𝜋 ● β)

If we were in a state I item,
where might we be after parsing ො𝜋?

Grammar

Parser Automaton
State

Diagram
Closure

Sets
GoTo
Sets

Action
Table

GoTo
Table

Transition OperationsInput

16

P → (● L)
L → ● id
L → ● L id

L → id ●

P → (L ●)
L → L ● id

L → L Id ●

P

(

id

L

P → (L) ●

)

id

S’ → P ●S’ → ● P
P → ● (L)

I0 I1

I2

I4
I6

I3

I5

Grammar

Parser Automaton
State

Diagram
Closure

Sets
GoTo
Sets

Action
Table

GoTo
Table

Transition OperationsInput

17

LR Automaton Construction
Add new start S’ and S’ → S
Build State I0 for Closure({S’ → ● S})
Saturate FSM:

for each symbol ො𝜋 s.t. item in state j
contains A → 𝛼 ● ො𝜋 𝛽:

add transition from state j to
the state for GoTo(j, X)

18

SLR Parsing

closure
{ S’ → ● P }

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

Start with the I0 state

Identify state
Closure({ S’ → ● P})

=
S’ → ● P
(∀ P ::= ● γ)
P → ● (L)

19

SLR Parsing

Add Edges:
GoTo(I0, P) = closure({ S’ → P ● })
GoTo(I0, () = closure({P → (● L) })

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

closure
{ S’ → P ● }

closure
{ P → (● L)

P

(

S’ → ● P
I0

P → ● (L)

Start with the I0 state

Identify state
Closure({ S’ → ● P})

=
S’ → ● P
(∀ P ::= ● γ)
P → ● (L)

20

SLR Parsing

closure
{ S’ → P ● }

Identify state
Closure({ S’ → P ● })

=
{ S’ → P ● }
(nothing else)

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

closure
{ P → (● L)

P

(

S’ → ● P
I0

P → ● (L)

21

SLR Parsing

Identify edges from I1

(none)

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

closure
{ P → (● L)

P

(

S’ → ● P
I0 S’ → P ●

I1

P → ● (L)

Identify state
Closure({ S’ → P ● })

=
{ S’ → P ● }
(nothing else)

22

SLR Parsing

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

closure
{ P → (● L)

P

(

S’ → ● P
I0 S’ → P ●

I1

P → ● (L)

Identify state
Closure({ P → (● L) })

=
P → (● L)

L → ● id
L → ● L id

Edges out of I2

GoTo(I2, id) = closure({L → id ● })

GoTo(I2, L) = closure
P → (L ●),

23

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● (L)
Grammar G

❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L)
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L → L ● id

closure
{ L → id ● }

closure
P → (L ●),
L → L ● id

L

id

Identify state
Closure({ P → (● L) })

=
P → (● L)

L → ● id
L → ● L id

24

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● (L)
Grammar G

❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L)
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

closure
{ L → id ● }

closure
P → (L ●),
L → L ● id

L

id

Identify state

closure
P → (L ●),

=
P → (L ●)
L → L ● id

(nothing else)

L → L ● id

25

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● (L)
Grammar G

❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L)
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

closure
{ L → id ● }

L

id

P → (L ●)
L → L ● id

I3

Identify state

closure
P → (L ●),
L → L ● id

=
P → (L ●)
L → L ● id

(nothing else)

26

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● (L)
Grammar G

❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L)
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L

id

P → (L ●)
L → L ● id

I3

closure
{ P → (L) ●

)

closure
{ L → id ● }

Edges out of I3

GoTo(I3,)) = closure({P → (L) ● })
GoTo(I3, id) = closure({L → L id ● })

closure
{ L → L id ●)

id

Identify state

closure
P → (L ●),
L → L ● id

=
P → (L ●)
L → L ● id

(nothing else)

27

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● (L)
Grammar G

❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L)
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

closure
{ L → id ● }

L

id

P → (L ●)
L → L ● id

I3

Identify state
Closure({ L → id ● })

=
L → id ●

closure
{ P → (L) ●

)

closure
{ L → L id ●)

id

28

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● (L)
Grammar G

❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L)
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L → id ●
I4

L

id

P → (L ●)
L → L ● id

I3

closure
{ P → (L) ●

)

closure
{ L → L id ● }

id

Identify state
Closure({ L → id ● })

=
L → id ●

No edges out of I4

29

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● (L)
Grammar G

❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L)
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L → id ●
I4

L

id

P → (L ●)
L → L ● id

I3

closure
{ P → (L) ●

)

closure
{ L → L id ● }

id

Identify state
Closure({ P → (L) ● })

=
P → (L) ●

(nothing else)

30

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● (L)
Grammar G

❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

Identify state
Closure({ P → (L) ● })

=
P → (L) ●

(nothing else)

P → (● L)
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L → id ●
I4

L

id

P → (L ●)
L → L ● id

I3

)

closure
{ L → L id ● }

id

P → (L) ●
I5

No edges out of I5

31

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● (L)
Grammar G

❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

Identify state
Closure({ L → id ● })

=
L → id ●

(nothing else)

P → (● L)
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L → id ●
I4

L

id

P → (L ●)
L → L ● id

I3

)

closure
{ L → L id ● }

id

P → (L) ●
I5

No edges out of I6

32

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● (L)
Grammar G

❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L)
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L → id ●
I4

L

id

P → (L ●)
L → L ● id

I3

)

L → L id ●
I6

id

P → (L) ●
I5

Identify state
Closure({ L → id ● })

=
L → id ●

(nothing else)

33

Closure(I):
Begin with I
Repeat until saturation:

if X → α ● Z β ϵ Closure(I):
∀ Z ::= γ, add Z → ● γ

Parse Table Construction
1: Add new 1st production S’ ::= S to G
2: Build State I0 for Closure({S’ → ● S})
3: Saturate FSM:

Add edges according to GoTo
Add nodes according to Closure

P

(

S’ → ● P
I0

P → ● (L)
Grammar G

❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

SLR Parsing

S’ → P ●
I1

P → (● L)
L → ● id
L → ● L id

I2

GoTo(I,X) =
State that represents

Closure of all items
A → α ො𝜋 ● β where
A → α● ො𝜋 β ϵ I

L → id ●
I4

L

id

P → (L ●)
L → L ● id

I3

)

L → L id ●
I6

id

P → (L) ●
I5

Automaton Complete!

34

LR Parser Construction

Grammar

Parser Automaton
State

Diagram
Closure

Sets
GoTo
Sets

Action
Table

GoTo
Table

Transition OperationsInput

P

(

S’ → ● P
I0

P → ● (L)
Grammar G

❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

S’ → P ●
I1

P → (● L)
L → ● id
L → ● L id

I2

L → id ●
I4

L

id

P → (L ●)
L → L ● id

I3

)

L → L id ●
I6

id

P → (L) ●
I5

35

LR Parser Construction

() id eof

I0

I1

I2

I3

I4

I5

I6

Action Table

Row: Item

Column: Symbol

P → (● L)
L → ● id
L → ● L id

L → id ●

P → (L ●)
L → L ● id

L → L Id ●

P

(

id

L

P → (L) ●

)

id

S’ → P ●S’ → ● P
P → ● (L)

I0 I1

I2

I4
I6

I3

I5

GoTo Table

P L

36

LR Parser Construction

Types of Actions (hence, table cell entries):

• Shift (terminal edge), push 1 state, advance lookahead

• Reduce (reduce state), pop RHS stack items

• GoTo (nonterminal edge), push LHS item following reduce

• (Special actions: accept / reject)

Item
Stack

Next
Token

I0)

I3

I2

I6

Item
Stack

Next
Token

I0

I3

I2

I6
R❹ to L

New top

)

Item
Stack

Next
Token

I0

I3

I2

)

Item
Stack

Next
Token

I0

I3

I2

eof

I5

Terminal edge
I3,id→I6

Accepting state
Pop 2 items

Nonterminal edge
I2,L →I3

Terminal edge
I3,) →I5

I0 id

I3

I2

Item
Stack

Next
Token

T3

37

LR Parser Construction

Grammar

Parser Automaton
State

Diagram
Closure

Sets
GoTo
Sets

Action
Table

GoTo
Table

Transition OperationsInput

SLR Building algorithm
For each edge Ij, 𝜏 = Ik in the FSM:

if 𝜏 is a terminal: set Action[Ij, 𝜏] = shift Ik

if 𝜏 is a nonterminal: set GoTo[Ij, 𝜏] = Ik

If state Ij includes item S’ → S ●
set Action[Ij, eof] = accept

If state Ij includes item A → α ● where A is not S’
for each t in FOLLOW(A):

set Action[Ij,t] = reduce by A → α
All other entries are error actions

shift

go to

accept

reduce

38

LR Parser Construction

() id eof

I0

I1

I2

I3

I4

I5

I6

I2

I4

I5
I6

Action Table

4 Types of Table entries

Shift, GoTo, Accept, Reduce

P → (● L)
L → ● id
L → ● L id

L → id ●

P → (L ●)
L → L ● id

L → L Id ●

P

(

id

L

P → (L) ●

)

id

S’ → P ●S’ → ● P
P → ● (L)

I0 I1

I2

I4
I6

I3

I5

GoTo Table

P L

I1

I3

Standard DFA

Translation

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

39

LR Parser Construction

() id eof

I0

I1

I2

I3

I4

I5

I6

I2

I4

I5
I6

Action Table

4 Types of Table entries

Shift, GoTo, Accept, Reduce

P → (● L)
L → ● id
L → ● L id

L → id ●

P → (L ●)
L → L ● id

L → L Id ●

P

(

id

L

P → (L) ●

)

id

S’ → P ●S’ → ● P
P → ● (L)

I0 I1

I2

I4
I6

I3

I5

GoTo Table

P L

I1

I3

Mark state(s)

with S’ → S ●
as accept

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id ☺

40

LR Parser Construction

() id eof

I0

I1

I2

I3

I4

I5

I6

I2

I4

I5
I6

Action Table

4 Types of Table entries

Shift, GoTo, Accept, Reduce

P → (● L)
L → ● id
L → ● L id

L → id ●

P → (L ●)
L → L ● id

L → L Id ●

P

(

id

L

P → (L) ●

)

id

S’ → P ●S’ → ● P
P → ● (L)

I0 I1

I2

I4
I6

I3

I5

GoTo Table

P L

I1

I3

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

R❸ R❸

R❷

R❹ R❹

☺

We reduce when
we reach the

end of a rule…
Choosing when to

reduce distinguishes
the parser type

R❸ R❸ R❸ R❸

R❷ R❷R❷R❷ R❷

R❹ R❹ R❹ R❹

Simplest Version – LR(0): reduce whenever
the state is reached

41

LR Parser Construction

() id eof

I0

I1

I2

I3

I4

I5

I6

I2

I4

I5
I6

Action Table

4 Types of Table entries

Shift, GoTo, Accept, Reduce

P → (● L)
L → ● id
L → ● L id

L → id ●

P → (L ●)
L → L ● id

L → L Id ●

P

(

id

L

P → (L) ●

)

id

S’ → P ●S’ → ● P
P → ● (L)

I0 I1

I2

I4
I6

I3

I5

GoTo Table

P L

I1

I3

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

R❸ R❸

R❷

R❹ R❹

☺

R❸ R❸ R❸ R❸

R❷ R❷R❷R❷ R❷

R❹ R❹ R❹ R❹

Simplest Version – LR(0): reduce whenever
the state is reached

What’s the problem?

Table
Collisions

42

LR Parser Construction

a eof

I0

I1

I2

I3

I2

I3

Action

4 Types of Table entries

Shift, GoTo, Accept, Reduce

X → a ● X
X → a ●
X → ● a X
X → ● a

X → a X ●

X

a

X

S’ → X ●
S’ → ● X
X → ● a X
X → ● a

I0 I1

I2
I3

GoTo

X

I1

☺

a

I2

R❷R❷R❷

R❸ R❸ R❸

Simplest Version – LR(0): reduce whenever
the state is reached

What’s the problem?

Table
Collisions

Grammar G
❶ S’ ::= X
❷ X ::= a X
❸ X ::= a

43

LR Parser Construction

a eof

I0

I1

I2

I3

I2

I3

Action

4 Types of Table entries

Shift, GoTo, Accept, Reduce

GoTo

X

I1

Grammar G
❶ S’ ::= X
❷ X ::= a X
❸ X ::= a

☺

I2

R❷R❷R❷

R❸ R❸ R❸

X

a

Parse Trees

a

X

X

a

❷

❸

❷

Simplest Version – LR(0): reduce whenever
the state is reached

X → a ● X
X → a ●
X → ● a X
X → ● a

X → a X ●

X

a

X

S’ → X ●
S’ → ● X
X → ● a X
X → ● a

I0 I1

I2
I3

a

What’s the problem?

Table
CollisionsBetter

FOLLOW set allows it

SLR

44

LR Parser Construction

a eof

I0

I1

I2

I3

I2

I3

Action

4 Types of Table entries

Shift, GoTo, Accept, Reduce

GoTo

X

I1

Grammar G
❶ S’ ::= X
❷ X ::= a X
❸ X ::= a

☺

I2

R❷R❷R❷

R❸ R❸ R❸

X

a

Parse Trees

a

X

X

a

❷

❸

❷

Simplest Version – LR(0): reduce whenever
the state is reached

X → a ● X
X → a ●
X → ● a X
X → ● a

X → a X ●

X

a

X

S’ → X ●
S’ → ● X
X → ● a X
X → ● a

I0 I1

I2
I3

a

Better

FOLLOW set allows it

SLR

if state Ij has A → α ● where A ≠ S’
for each t in FOLLOW(A):

Action[Ij,t] = reduce by A ::= α

FOLLOW(X) = { eof }

45

LR Parser Construction

() id eof

I0

I1

I2

I3

I4

I5

I6

S I2

S I4

S I5
S I6

Action Table

4 Types of Table entries

Shift, GoTo, Accept, Reduce

P → (● L)
L → ● id
L → ● L id

L → id ●

P → (L ●)
L → L ● id

L → L Id ●

P

(

id

L

P → (L) ●

)

id

S’ → P ●S’ → ● P
P → ● (L)

I0 I1

I2

I4
I6

I3

I5

GoTo Table

P L

I1

I3

if state Ij has A → α ● where A ≠ S’
for each t in FOLLOW(A):

Action[Ij,t] = reduce by A ::= α

Grammar G
❶ S’ ::= P
❷ P ::= (L)
❸ L ::= id
❹ L ::= L id

FOLLOW(L) = {), id }
FOLLOW(P) = { eof }

R❸ R❸

R❷

R❹ R❹

☺

Better Version – SLR: reduce whenever
FOLLOW set allows it

46

LR Parser Construction

Constructing a new type of parser, the LR

• For all LR parsers:
– build closure and goto sets

– Build the parser automaton

– Tableize it

• For some LR parsers:
– What “closure set” and “goto set” mean is different

– Tabelizing changes (SLR uses FOLLOW sets to Reduce)

– There are more advanced LR parsers with more elaborate
closure and goto sets (we won’t cover them)

47

Preview - Scope

Finally done with parsing!
• Done with the frontend of the compiler!

48

Preview - Scope

Finishing up some final details of the LR Parser

• Running the table-based parser

• Bottom-up SDT

After that, all done with parsing!

• Done with the frontend of the compiler

	Slide 1
	Slide 2: SLR Parser Construction
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Parser-Building Workflow
	Slide 14: Parser-Building Workflow: Closure From Grammar
	Slide 15: Parser-Building Workflow: GoTo From Closure
	Slide 16: Parser-Building Workflow: FSM from GoTo + Closure
	Slide 17: Parser-Building Workflow: FSM from GoTo + Closure
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

