
University of Kansas | Drew Davidson

1

Review – FIRST Sets

Building LL(1) Parsers

• Transforming grammars:
• Left factoring

• Left-recursion elimination

• Building the selector table
• FIRST Sets

2

Parsing

You Should Know

• The intuition behind FIRST and FOLLOW
• The formal definition of FIRST sets

FOLLOW Sets

Building LL(1) Parsers

• LL(1) Game Plan

• Finish up FIRST Sets

• FOLLOW Sets

3

Parsing

LL(1) Game Plan

Parsers are a bit tricky!

• Sadly, you need to know this
to build a compiler frontend

The underlying concepts of
FIRST and FOLLOW will be
useful for LL(1) and other
parsers

• (We’ll talk about 1 other kind
– the LR parsers, which is
what BISON generates).

4

LL(1) Game Plan

5

() { }

S (S) ε { S } ε

Selector Table

into

this…

S ::= (S)
| { S }
| 𝜺

Example Grammar Turning

this…

so we can do

this…

Building the LL(1) Selector Table

6

FIRST(α)FIRST(X) FOLLOW(X) Fill Cells

Step 1. Step 2. Step 3.

Build FIRST sets
for single

symbols of
the grammar

Build FIRST sets
for RHS symbols
strings

Build FOLLOW sets
for Nonterminals

Place productions

Step 4.

Building LL(1) Selector Table

7

for each production X ::= α

if t is in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each t in FOLLOW(X)

put X::= α in Table[X][t]

We rely on FIRST sets and FOLLOW sets for table construction
But these sets will be useful even beyond the LL parsers

LL(1) The Big Picture

8

a b c

S

X

S ::= X b X
| b b

X ::= a X
| c

Grammar

P1

P2

P3

P4

P1 P1P2

P3 P4

Seof

X b X

c Xa

c

S c
I0eof

X c
I0eof

b

X

c
I0

X

eof

b

c

b
I1

X

eof

b
a
I2

X

eof

a
I2

X

eof

a

c
I3

X

eof

c
I3

c

eof

eof

I4eof

I0 I1 I2 I3 I4

Predicted Parse TreeToken streamSelector Table

pop S
push X b X

pop X
push c

pop c
look++

pop b
look++

pop X
push a X

pop a
look++

pop X
push c Pop eof

Accept!

pop c
look++

b a cc

LL(1) The Big Picture

• Goals: to expand the leftmost nonterminal

• Skills: always knows the first leaf of the
leftmost nonterminal’s subtree

9

a b c

S

X

S ::= X b X
| b b

X ::= a X
| c

Grammar

P1

P2

P3

P4

P1 P1P2

P3 P4

Seof

X b X

c Xa

c

I0 I1 I2 I3 I4

Predicted Parse TreeToken streamSelector Table

b a cc

LL(1) Parser “Résumé”

LL(1) The Big Picture

• Goals: to expand the leftmost nonterminal

• Skills: always knows the first leaf of the
target nonterminal’s subtree

10

LL(1) Parser “Résumé”

In an LL(1) grammar this is a sufficient skillset!

• Can choose correct production when target’s
first leaf token is given

• Can choose correct production when there is
no leaf token based on next subtree over

(FIRST sets)

(FOLLOW sets)

LL(1) The Big Picture

11

Y ::= Z XExample Grammar Fragment P3

Syntax Stack Look ahead

eof

Y

b

c

Does P3 apply to this lookahead?

• Yes, if b is in FIRST(Z)

Y

Z X

b

Y

Z X

b

R a

FIRST(X): The set of terminals that begin strings derivable from X,
and also, if X can derive ε, then ε is in FIRST(X).

LL(1) The Big Picture

12

Y ::= Z XExample Grammar Fragment P3

Syntax Stack Look ahead

eof

Y

b

c

Does P3 apply to this lookahead?

• Yes, if b is in FIRST(Z)

• Yes, if 𝜀 is in FIRST(Z) and b is in FIRST(X)

Y

Z X

𝜀

Y

Z X

b

R ab 𝜀

FIRST(X): The set of terminals that begin strings derivable from X,
and also, if X can derive ε, then ε is in FIRST(X).

LL(1) The Big Picture

13

Y ::= Z XExample Grammar Fragment P3

Syntax Stack Look ahead

eof

Y

b

c

Does P3 apply to this lookahead?

• Yes, if b is in FIRST(Z)

• Yes, if 𝜀 is in FIRST(Z) and b is in FIRST(X)

• Yes, if 𝜀 is in FIRST(Z) and FIRST(X),
and b can FOLLOW right after Y

Y

Z X

𝜀

G

b

𝜀

Y

Z X

𝜀

G

b

𝜀

Q

𝜀

FIRST(X): The set of terminals that begin strings derivable from X,
and also, if X can derive ε, then ε is in FIRST(X).

LL(1) The Big Picture

14

Y ::= Z XExample Grammar Fragment P3

Syntax Stack Look ahead

eof

Y

b

c

Does P3 apply to this lookahead?

• Yes, if b is in FIRST(Z)

• Yes, if 𝜀 is in FIRST(Z) and b is in FIRST(X)

• Yes, if 𝜀 is in FIRST(Z) and FIRST(X),
and b can FOLLOW right after Y

We’re interested in
a more general

question…

FIRST(X): The set of terminals that begin strings derivable from X,
and also, if X can derive ε, then ε is in FIRST(X).

LL(1) The Big Picture

15

Y ::= Z XExample Grammar Fragment P3

P4

Syntax Stack Look ahead

eof

Y

b

Z ::= b

P5

X ::= a Y c
| c

P1

P2

c

| a

Does P3 apply to this lookahead?

• Yes, if b is in FIRST(Z)

• Yes, if 𝜀 is in FIRST(Z) and b is in FIRST(X)

• Yes, if 𝜀 is in FIRST(Z) and FIRST(X),
and b can FOLLOW right after Y

At what lookahead tokens does P3 apply?

• Those in FIRST(Z)

• If 𝜀 is in FIRST(Z), those in FIRST(X)

• If 𝜀 is in FIRST(Z) and FIRST(X),
those that follow Y

Syntax
Stack

Look
ahead

eof

Y

???

c

FOLLOW Sets

Building LL(1) Parsers

• LL(1) Game Plan

• Building a Grammar’s FIRST sets

• FOLLOW Sets

16

Parsing

Building a Grammar’s FIRST Sets

17

Building FIRST for a terminal t

FIRST(t) = { t }

Building FIRST for a nonterminal X
For all productions with X on the LHS (i.e. X ::= α)

Add FIRST(α) to FIRST X

Building FIRST for a symbol string α
Let α be composed of symbols α1 α2 … αn

C1: add FIRST(α1) - 𝜀
C2: For all k < n: if α1 … αk-1 is nullable, add FIRST(αk) - 𝜀
C3: If α1 … αn is nullable, add 𝜀

Building FIRST for a nonterminal X
For all productions with X on the LHS and α = α1 α2 … αn on the RHS

C1: add FIRST(α1) - 𝜀
C2: For all k < n: if α1 … αk-1 is nullable, add FIRST(αk) - 𝜀
C3: If α1 … αn is nullable, add 𝜀

Building FIRST for 𝜀

FIRST(𝜀) = { 𝜀 }

Building a Grammar’s FIRST Sets

18

Building FIRST for a terminal t

FIRST(t) = { t }

Building FIRST for a nonterminal X
For all productions with X on the LHS (i.e. X ::= α)

Add FIRST(α) to FIRST X

Building FIRST for a symbol string α
Let α be composed of symbols α1 α2 … αn

C1: add FIRST(α1) - 𝜀
C2: For all k < n: if α1 … αk-1 is nullable, add FIRST(αk) - 𝜀
C3: If α1 … αn is nullable, add 𝜀

Building FIRST for 𝜀

FIRST(𝜀) = { 𝜀 }

Mutually recursive (dependency loop)!
This means that there’s one additional step we need…

Building Grammar’s FIRST Sets

19

For each nonterminal of the grammar

Loop over for all productions (of the form X ::= α, wlog)

Add FIRST(α) to FIRST(X)

(if a set hasn’t been computed, use {}, the empty set)

until saturation (no set changes)

P ::= Q 1
| a

Q ::= P 0
| b

1

P

Q

P 0

a

FIRST(P) ⊆ FIRST(Q) ⊆ FIRST(P)

1

P

Q

b

• Begin by computing the
single-symbol FIRST sets for
each production’s LHS

• Run until saturation

• Can help to work bottom-up

• Compute symbol-string FIRST
sets for each production’s RHS

• Stay hydrated!

20

S ::= X b X
| 𝜀

X ::= a X
| 𝜀

FOLLOW Sets

Building LL(1) Parsers

• LL(1) Game Plan

• Building a Grammar’s FIRST sets

• FOLLOW Sets

21

Parsing

22

for each production X ::= α

if t is in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each t in FOLLOW(X)

put X::= α in Table[X][t]

FIRST(α)FIRST(X) FOLLOW(X) Fill Cells

LHS FIRST sets RHS FIRST sets FOLLOW sets Place productions

LL(1) The Big Picture

23

Y ::= Z XExample Grammar Fragment P3

Syntax Stack Look ahead

eof

Y

b

c

Does P3 apply to this lookahead?

• Yes, if b is in FIRST(Z)

• Yes, if 𝜀 is in FIRST(Z) and b is in FIRST(X)

• Yes, if 𝜀 is in FIRST(Z) and FIRST(X),
and b can FOLLOW right after Y

Y

Z X

𝜀

G

b

𝜀

Y

Z X

𝜀

G

b

𝜀

Q

𝜀

Live Assignments
P1
H2

24

A

eY

d eZ

kb

S

A

f

RZ G

f𝜀

S

A

b p

S

n e A

PT

𝜀 𝜀

S

b ∈ FIRST(A)

A

RZ M

g𝜀

S

𝜀

b ∈ FIRST(A) f ∈ FIRST(A) g ∈ FIRST(A) 𝜀 ∈ FIRST(A)

FIRST(X): The set of terminals that begin strings derivable from X,
and also, if X can derive ε, then ε is in FIRST(X).

Live Assignments
P1
H2

25

FIRST(X): The set of terminals that begin strings derivable from X,
and also, if X can derive ε, then ε is in FIRST(X).

FOLLOW(X): The set of terminals that begin strings derivable right after X,
and EOF if there could be no terminals after subtree

If these were the only parse trees, what is FOLLOW(A)?

Yields { e } Yields { m } Yields { f } Yields { z } Yields { eof } Yields { eof }

What does each parse tree say about FOLLOW(A) where S is start?

{ e, m, f, z, eof }

A

a p

n e

S

A

m

Y

b

R

f

S

A

b

R

f

W

𝜀

S

A

a p

n

S

A

b

R𝜀 B

G O

𝜀 𝜀

C

z

S

G p

A

PT

𝜀 𝜀

W

𝜀

S

Live Assignments
P1
H2

26

S ::= X b
X ::= a
X ::= 𝜀

a b

S

X

S ::= X b S ::= X b FIRST(X b) = { a, b }

Live Assignments
P1
H2

27

S ::= X b
X ::= a
X ::= 𝜀

a b

S

X

S ::= X b

X ::= a

S::= X b FIRST(X b) = { a, b }

FIRST(a) = { a }

Live Assignments
P1
H2

28

S ::= X b
X ::= a
X ::= 𝜀

a b

S

X

X b

a 𝜀

X b FIRST(X b) = { a, b }

FIRST(a) = { a }

We need to know that

b follows X
to place this

Live Assignments
P1
H2

29

S ::= X b
X ::= a
X ::= 𝜀

a b

S

X

X b

a 𝜀

X b FIRST(X b) = { a, b }

FIRST(a) = { a }

We need to know that

b follows X
to place this

S ::= X
X ::= a X
X ::= 𝜀

a EOF

S

X

X

a X

X

𝜀

FOLLOW(X) =

30

t t ∈ Σ ∧ S ֜
+

αXtβ ∨ (t = 𝐞𝐨𝐟 ∧ S ֜
+

αX)

Those terminals derivable immediately after X

also eof when X ends a derivation

31

FOLLOW(X) for each nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

32

Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

Building Follow(S) (S in for X)

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

C1: S is the start nonterminal, so add eof

R emptySQ

Rules of the form Z ::= α X β

R ::= Q S

C2: β is empty, so add nothing

C3: β is empty, so N/A

C4: β is empty, so add FOLLOW(R),
which is currently nothing

33

Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

C2: β is c, add FIRST(c) - 𝜀 = { c }

C3: β is c, 𝜀 ∉ FIRST(c), so N/A

C4: β is not empty, so N/A

R empty Q cR ::= Q c

Rules of the form Z ::= α X β

R ::= Q S

R ::= Q Q

R ::= Q Q

adds { c }

Building Follow(Q) (Q in for X)

C1: N/A (Q not the start nonterminal)

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

34

Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

C2:

C3:

C4:

R empty Q S

β is S, FIRST(S) - 𝜀 = { a, b }

β is S, 𝜀 ∉ FIRST(S), so N/A

β is not empty, so N/A

R ::= Q c

Rules of the form Z ::= α X β

R ::= Q S

R ::= Q Q

R ::= Q Q

adds { c }

adds {a,b}

Building Follow(Q) (Q in for X)

C1: N/A (Q not the start nonterminal)

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

35

Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

C2:

C3:

C4:

R empty Q Q

β is Q, FIRST(Q) - 𝜀 = { }

β is not empty, so N/A

β is Q, Z is R, 𝜀 ∈ FIRST(Q),
add FOLLOW(R) = { }

R ::= Q c

Rules of the form Z ::= α X β

R ::= Q S

R ::= Q Q

R ::= Q Q

adds { c }

adds {a,b}

adds { }

adds { }

Building Follow(Q) (Q in for X)

C1: N/A (Q not the start nonterminal)

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

36

Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

C2:

C3:

C4:

β is empty, so add { }

β is not empty, Z is R,
add FOLLOW(R) = { }

β is empty, so N/A

R emptyQQR ::= Q c

Rules of the form Z ::= α X β

R ::= Q S

R ::= Q Q

R ::= Q Q

adds { c }

adds {a,b}

adds { }

adds { }

Building Follow(Q) (Q in for X)

C1: N/A (Q not the start nonterminal)

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

37

Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { C }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

= { c, a, b }

Building Follow(Q) (Q in for X)

R ::= Q c

Rules of the form Z ::= α X β

C1: N/A (Q not the start nonterminal)

R ::= Q S

R ::= Q Q

R ::= Q Q

adds { c }

adds {a,b}

adds { }

adds { }

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

38

Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

Building Follow(R) (R in for X)

S ::= b R

Rules of the form Z ::= α X β
C1: N/A (R not the start nonterminal)

= { eof }

=

adds { eof }

{ c, a, b }

β is empty, add { }

Z is S, add FOLLOW(S) = { eof }

S emptyRb

C2:

C3:

C4:

β is empty, N/A

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

39

Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

S ::= b R

= { eof }

=

adds { eof }

{ c, a, b }

= { eof }

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

40

Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

= { c, a, b }

= { eof }

All done?

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

41

Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { a, b }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

C2:

C3:

C4:

β is empty, so add { }

β is not empty, Z is R,
add FOLLOW(R) = { }

β is empty, so N/A

R emptyQQR ::= Q c

Rules of the form Z ::= α X β

R ::= Q S

R ::= Q Q

R ::= Q Q

adds { c }

adds {a,b}

adds { }

adds { }

Building Follow(Q) (Q in for X)

C1: N/A (Q not the start nonterminal)

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

Recall computing
FOLLOW(Q)

We used a set that
later changed!

42

Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

= { c, a, b }

= { eof }

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

Round 2

FOLLOW(S) = { eof }

FOLLOW(Q) = { c, a, b, eof }

FOLLOW(R) = { eof }

Round 3

FOLLOW(S) = { eof }

FOLLOW(Q) = { c, a, b, eof }

FOLLOW(R) = { eof }

PSA
Run FOLLOW and FIRST

computations until saturation

43

FIRST(α)FIRST(X) FOLLOW(X) Fill Cells

Step 1. Step 2. Step 3.

Build FIRST sets
for single

symbols of
the grammar

Build FIRST sets
for RHS symbols
strings

Build FOLLOW sets
for Nonterminals

Place productions

Step 4.

44

for each production X ::= α

for each terminal t in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each t in FOLLOW(X)

put X::= α in Table[X][t]

45

Time permitting: Examples

a b c d eof

S

B

D

46

S ::= B c | D B

B ::= a b | c S

D ::= d | ε

FIRST (S)
FIRST (B)
FIRST (D) { d, ε }

{ a, c }
{ a, c, d }

FIRST (D B) { d, a, c }
FIRST (B c) { a, c }

FIRST (a b) { a }
FIRST (c S) { c }

=
=

=

=

=
=

=

for each production X ::= α

for each terminal t in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each terminal t in FOLLOW(X)

put X ::= α in Table[X][t]

Table[X][t]

a b

CFG

FOLLOW (S) { eof, c } =

FOLLOW (B) { c, eof }=

FOLLOW (D) { a, c } =

B

For each production X ::= 𝛼

B ::= a b a b

Look at terminals in FIRST(𝛼) = { a }:

Put B ::= a b @ Table[B][a]

𝜀 is not in FIRST(𝛼) = { a }:

Done with this production

a b c d eof

S

B

D

47

S ::= B c | D B

B ::= a b | c S

D ::= d | ε

FIRST (S)
FIRST (B)
FIRST (D) { d, ε }

{ a, c }
{ a, c, d }

FIRST (D B) { d, a, c }
FIRST (B c) { a, c }

FIRST (a b) { a }
FIRST (c S) { c }

=
=

=

=

=
=

=

for each production X ::= α

for each terminal t in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each terminal t in FOLLOW(X)

put X ::= α in Table[X][t]

Table[X][t]

a b

CFG

FOLLOW (S) { eof, c } =

FOLLOW (B) { c, eof }=

FOLLOW (D) { a, c } =

D

Because 𝜀 is in FIRST(𝛼)

Put D ::= 𝜀 @ Table[D][a]

Look at everything in Follow(X) = { a, c }

Put D ::= 𝜀 @ Table[D][c]

For each production X ::= 𝛼

𝜀

𝜀 𝜀

Look at terminals in FIRST(𝛼) = { 𝜀 }

D ::= 𝜀

There are none

a b c d eof

S

B

D

48

S ::= B c | D B

B ::= a b | c S

D ::= d | ε

FIRST (S)
FIRST (B)
FIRST (D) { d, ε }

{ a, c }
{ a, c, d }

FIRST (D B) { d, a, c }
FIRST (B c) { a, c }

FIRST (a b) { a }
FIRST (c S) { c }

=
=

=

=

=
=

=

for each production X ::= α

for each terminal t in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each terminal t in FOLLOW(X)

put X ::= α in Table[X][t]

Table[X][t]

a b

CFG

FOLLOW (S) { eof, c } =

FOLLOW (B) { c, eof }=

FOLLOW (D) { a, c } =

S

Put S ::= D B @ Table[S][d]

For each production X ::= 𝛼

𝜀 𝜀

S ::= D B D B

Look at terminals in FIRST(𝛼) = { d, a, c }

Put S ::= D B @ Table[S][a]

Put S ::= D B @ Table[S][c]

D B D B

𝜀 is not in FIRST(𝛼) = { d, a, c }:

Done with this production

a b c d eof

S

B

D

49

S ::= B c | D B

B ::= a b | c S

D ::= d | ε

FIRST (S)
FIRST (B)
FIRST (D) { d, ε }

{ a, c }
{ a, c, d }

FIRST (D B) { d, a, c }
FIRST (B c) { a, c }

FIRST (a b) { a }
FIRST (c S) { c }

=
=

=

=

=
=

=

for each production X ::= α

for each terminal t in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each terminal t in FOLLOW(X)

put X ::= α in Table[X][t]

Table[X][t]

a b

CFG

FOLLOW (S) { eof, c } =

FOLLOW (B) { c, eof }=

FOLLOW (D) { a, c } =

S

Put S ::= B C @ Table[S][a]

For each production X ::= 𝛼

𝜀 𝜀

S ::= B c B c

Look at terminals in FIRST(𝛼) = { a, c }

Put S ::= B C @ Table[S][c]

D B D B

𝜀 is not in FIRST(𝛼) = { a }:

Done with this production

B c B c

a b c d eof

S

B

D

50

S ::= B c | D B

B ::= a b | c S

D ::= d | ε

FIRST (S)
FIRST (B)
FIRST (D) { d, ε }

{ a, c }
{ a, c, d }

FIRST (D B) { d, a, c }
FIRST (B c) { a, c }

FIRST (a b) { a }
FIRST (c S) { c }

=
=

=

=

=
=

=

for each production X ::= α

for each terminal t in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each terminal t in FOLLOW(X)

put X ::= α in Table[X][t]

Table[X][t]

a b

CFG

FOLLOW (S) { eof, c } =

FOLLOW (B) { c, eof }=

FOLLOW (D) { a, c } =

𝜀 𝜀

D B D B

B c B c

Collision!

Grammar is

not LL(1)

Another

Collision!

Grammar is

still not LL(1)

52

FIRST(α)FIRST(X) FOLLOW(X) Fill Cells

Step 1. Step 2. Step 3.

Build FIRST sets
for single

symbols of
the grammar

Build FIRST sets
for RHS symbols
strings

Build FOLLOW sets
for Nonterminals

Place productions

Step 4.

TodayLast Time

Live Assignments
P1
H2

53

A

eY

d eZ

kb

S

A

f

RZ G

f𝜀

S

A

b p

S

n e A

PT

𝜀 𝜀

S

b ∈ FIRST(A)

A

RZ M

g𝜀

S

𝜀

b ∈ FIRST(A) f ∈ FIRST(A) g ∈ FIRST(A) 𝜀 ∈ FIRST(A)

FIRST(X): The set of terminals that begin strings derivable from X,
and also, if X can derive ε, then ε is in FIRST(X).

	Slide 1: FOLLOW Sets
	Slide 2: Last Time Review – FIRST Sets
	Slide 3: Today’s Outline FOLLOW Sets
	Slide 4: Perspective: Where we’re At LL(1) Game Plan
	Slide 5: What We’re Doing: The Big Picture LL(1) Game Plan
	Slide 6: What We’re Doing: The Big Picture Building the LL(1) Selector Table
	Slide 7: LL(1) Selector Table Algorithm Building LL(1) Selector Table
	Slide 8: LL(1) Parsers Revisited: Big Picture LL(1) The Big Picture
	Slide 9: LL(1) Parsers Revisited: Big Picture LL(1) The Big Picture
	Slide 10: LL(1) Parsers Revisited: Big Picture LL(1) The Big Picture
	Slide 11: FIRST Set Intuition LL(1) The Big Picture
	Slide 12: FIRST Set Intuition LL(1) The Big Picture
	Slide 13: FIRST Set Intuition LL(1) The Big Picture
	Slide 14: FIRST Set Intuition LL(1) The Big Picture
	Slide 15: FIRST Set Intuition LL(1) The Big Picture
	Slide 16: Today’s Outline FOLLOW Sets
	Slide 17: FIRST Sets: Review what we know Building a Grammar’s FIRST Sets
	Slide 18: FIRST Sets: Review what we know Building a Grammar’s FIRST Sets
	Slide 19: Building FIRST for all Grammar Symbols Building Grammar’s FIRST Sets
	Slide 20: Tricks for Computing FIRST Sets Building Parser Tables
	Slide 21: Today’s Outline FOLLOW Sets
	Slide 22: Selector Table Dependencies Building the Selector Table
	Slide 23: Follow Set Intuition LL(1) The Big Picture
	Slide 24: Again, The Parse tree Perspective Consider the Trees
	Slide 25: Again, The Parse tree Perspective Consider the Trees
	Slide 26: The Importance of FOLLOW Building Parser Tables
	Slide 27: The Importance of FOLLOW Building Parser Tables
	Slide 28: The Importance of FOLLOW Building Parser Tables
	Slide 29: The Importance of FOLLOW Building Parser Tables
	Slide 30: FOLLOW Sets, Formally Building Parser Tables
	Slide 31: Example: Building Follow Sets Building Parser Tables
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Review: Set Dependencies Building LL(!) Selector Table
	Slide 44: LL(1) Selector Table Algorithm Building LL(1) Selector Table
	Slide 45: LL(1) Selector Table Algorithm Building LL(1) Selector Table
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 52: Review: Selector Table Dependencies Review Lecture 9 – FIRST Sets
	Slide 53: A Parse Tree Perspective Building LL(1) Selector Table: FIRST sets, single symbol

