

FOLLOW Sets

Building LL(1) Parsers

- Transforming grammars:
- Left factoring
- Left-recursion elimination
- Building the selector table
- FIRST Sets

You Should Know

- The intuition behind FIRST and FOLLOW
- The formal definition of FIRST sets

Parsing

Today's Outline
 FOLLOW Sets

Building LL(1) Parsers

- LL(1) Game Plan
- Finish up FIRST Sets
- FOLLOW Sets

Parsing

Perspective: Where we're At LL(1) Game Plan

Parsers are a bit tricky!

- Sadly, you need to know this to build a compiler frontend
The underlying concepts of FIRST and FOLLOW will be useful for $\operatorname{LL}(1)$ and other parsers

- (We'll talk about 1 other kind - the LR parsers, which is what BISON generates).

What We're Doing: The Big Picture LL(1) Game Plan

What We're Doing: The Big Picture
 Building the LL(1) Selector Table

LL（1）Selector Table Algorithm
Building LL（1）Selector Table

```
for each production X : := 人
    if t is in FIRST(\alpha)
        put X : := 人 in Table[X][t]
    if }\varepsilon\mathrm{ is in FIRST ( }\alpha
        for each t in FOLLOW(X)
        put X::= 人 in Table[X][t]
```

We rely on FIRST sets and FOLLOW sets for table construction But these sets will be useful even beyond the LL parsers

LL(1) Parsers Revisited: Big Picture

LL(1) The Big Picture

Grammar

P_{1}	$S::=X \mathbf{b} X$	
P_{2}	\\| b b	
P_{3}	$X::=a X$	
P_{4}	c	

Selector Table

Token stream

Predicted Parse Tree

LL(1) Parsers Revisited: Big Picture

 LL(1) The Big PictureGrammar

P_{1}	$S::=X \mathbf{b} X$
P_{2}	\| b b
P_{3}	$X::=a x$
P_{4}	c

Selector Table

Token stream

Predicted Parse Tree

RESUME
 -

LL(1) Parser "Résumé"

- Goals: to expand the leftmost nonterminal
- Skills: always knows the first leaf of the leftmost nonterminal's subtree

LL(1) Parsers Revisited: Big Picture LL(1) The Big Picture

RESUME

LL(1) Parser "Résumé"

- Goals: to expand the leftmost nonterminal
- Skills: always knows the first leaf of the target nonterminal's subtree

In an $\mathrm{LL}(1)$ grammar this is a sufficient skillset!

- Can choose correct production when target's first leaf token is given (FIRST sets)
- Can choose correct production when there is no leaf token based on next subtree over

FIRST Set Intuition

LL(1) The Big Picture
FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε, then ε is in $\operatorname{FIRST}(X)$.

Example Grammar Fragment $\quad \mathrm{P}_{3} \quad Y::=Z X$

Does P3 apply to this lookahead?

- Yes, if b is in FIRST(Z)

b

FIRST Set Intuition

LL(1) The Big Picture
FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε, then ε is in $\operatorname{FIRST}(X)$.

Example Grammar Fragment $\quad \mathrm{P}_{3} \quad Y::=Z X$

Does P3 apply to this lookahead?

- Yes, if b is in FIRST(Z)
- Yes, if ε is in $\operatorname{FIRST}(Z)$ and b is in $\operatorname{FIRST}(X)$

FIRST Set Intuition

LL(1) The Big Picture
FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε, then ε is in $\operatorname{FIRST}(X)$.

Example Grammar Fragment $\quad \mathrm{P}_{3} \quad Y::=Z X$

Does P3 apply to this lookahead?

- Yes, if b is in FIRST(Z)
- Yes, if ε is in FIRST(Z) and b is in $\operatorname{FIRST}(X)$
- Yes, if ε is in $\operatorname{FIRST}(Z)$ and $\operatorname{FIRST}(X)$, and b can FOLLOW right after Y
r

FIRST Set Intuition
 LL(1) The Big Picture

FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε, then ε is in $\operatorname{FIRST}(X)$.

Example Grammar Fragment $\quad \mathrm{P}_{3} \quad Y::=Z X$

Does P3 apply to this lookahead?

- Yes, if b is in FIRST(Z)
- Yes, if ε is in $\operatorname{FIRST}(Z)$ and b is in $\operatorname{FIRST}(X)$
- Yes, if ε is in $\operatorname{FIRST}(Z)$ and $\operatorname{FIRST}(X)$, and b can FOLLOW right after Y

FIRST Set Intuition
 LL(1) The Big Picture

Does P3 apply to this lookahead?

- Yes, if b is in FIRST(Z)
- Yes, if ε is in FIRST(Z) and b is in $\operatorname{FIRST}(X)$
- Yes, if ε is in $\operatorname{FIRST}(Z)$ and $\operatorname{FIRST}(X)$, and b can FOLLOW right after Y

At what lookahead tokens does P3 apply?

- Those in FIRST(Z)
- If ε is in $\operatorname{FIRST}(Z)$, those in $\operatorname{FIRST}(X)$
- If ε is in $\operatorname{FIRST}(\mathrm{Z})$ and $\operatorname{FIRST}(\mathrm{X})$, those that follow Y

Today's Outline
 FOLLOW Sets

Building LL(1) Parsers

- LL(1) Game Plan
- Building a Grammar's FIRST sets
- FOLLOW Sets

Parsing

FIRST Sets: Review what we know

Building a Grammar's FIRST Sets

Building FIRST for a terminal t

$\operatorname{FIRST}(\mathrm{t})=\{\mathrm{t}\}$

Building FIRST for ε
$\operatorname{FIRST}(\varepsilon)=\{\varepsilon\}$

Building FIRST for a symbol string α

Let α be composed of symbols $\alpha_{1} \alpha_{2} \ldots \alpha_{n}$
$\mathrm{C}_{1}: \operatorname{add} \operatorname{FIRST}\left(\alpha_{1}\right)-\varepsilon$
C_{2} : For all $\mathrm{k}<\mathrm{n}$: if $\alpha_{1} \ldots \alpha_{\mathrm{k}-1}$ is nullable, add $\operatorname{FIRST}\left(\alpha_{\mathrm{k}}\right)-\varepsilon$
C_{3} : If $\alpha_{1} \ldots \alpha_{\mathrm{n}}$ is nullable, add ε
Building FIRST for a nonterminal X
For all productions with X on the LHS and $\alpha=\alpha_{1} \alpha_{2} \ldots \alpha$ n on the RHS $\mathrm{C}_{1}: \operatorname{add} \operatorname{FIRST}\left(\alpha_{1}\right)-\varepsilon$
C_{2} : For all $\mathrm{k}<\mathrm{n}$: if $\alpha_{1} \ldots \alpha_{k-1}$ is nullable, add $\operatorname{FIRST}\left(\alpha_{k}\right)-\varepsilon$
C_{3} : If $\alpha_{1} \ldots \alpha_{\mathrm{n}}$ is nullable, add ε

Building FIRST for a nonterminal X

For all productions with X on the LHS (i.e. $X::=\alpha$)
Add $\operatorname{FIRST}(\alpha)$ to $\operatorname{FIRST} X$

FIRST Sets: Review what we know Building a Grammar's FIRST Sets

Building FIRST for a terminal t
 $\operatorname{FIRST}(\mathrm{t})=\{\mathrm{t}\}$
 Building FIRST for ε
 $\operatorname{FIRST}(\varepsilon)=\{\varepsilon\}$

Building FIRST for a symbol string α

Let α be composed of symbols $\alpha_{1} \alpha_{2} \ldots \alpha_{n}$
$\mathrm{C}_{1}: \operatorname{add} \operatorname{FIRST}\left(\alpha_{1}\right)-\varepsilon$
C_{2} : For all $\mathrm{k}<\mathrm{n}$: if $\alpha_{1} \ldots \alpha_{k-1}$ is nullable, $\operatorname{add} \operatorname{FIRST}\left(\alpha_{k}\right)-\varepsilon$
C_{3} : If $\alpha_{1} \ldots \alpha_{\mathrm{n}}$ is nullable, add ε

Mutually recursive (dependency loop)!
This means that there's one additional step we need...

Building FIRST for a nonterminal X

For all productions with X on the LHS (i.e. $X::=\alpha$)
Add $\operatorname{FIRST}(\alpha)$ to FIRST X

Building FIRST for all Grammar Symbols

Building Grammar's FIRST Sets

```
For each nonterminal of the grammar
Loop over for all productions (of the form X ::= \(\alpha\), wlog)
Add FIRST( \(\alpha\) ) to FIRST(X)
(if a set hasn't been computed, use \(\}\), the empty set)
until saturation (no set changes)
```


Tricks for Computing FIRST Sets Building Parser Tables

- Begin by computing the single-symbol FIRST sets for each production's LHS
- Run until saturation
- Can help to work bottom-up

$$
\begin{aligned}
& S::=X \mathbf{b} X \\
& \mid \varepsilon \\
& X::=\mathbf{a} X \\
& \mid \varepsilon
\end{aligned}
$$

- Compute symbol-string FIRST sets for each production's RHS
- Stay hydrated!

Today's Outline
 FOLLOW Sets

Building LL(1) Parsers

- LL(1) Game Plan
- Building a Grammar's FIRST sets
- FOLLOW Sets

Parsing

Selector Table Dependencies Building the Selector Table

```
for each production X ::= \alpha
    if t is in FIRST(\alpha)
        put X : := 人 in Table[X][t]
    if }\varepsilon\mathrm{ is in FIRST ( }\alpha
        for each t in FOLLOW(X)
        put X::= 人 in Table[X][t]
```


Follow Set Intuition

LL(1) The Big Picture

Example Grammar Fragment $\quad \mathrm{P}_{3} \quad Y::=Z X$

Does P3 apply to this lookahead?

- Yes, if b is in FIRST(Z)
- Yes, if ε is in FIRST(Z) and b is in $\operatorname{FIRST}(X)$
- Yes, if ε is in $\operatorname{FIRST}(Z)$ and $\operatorname{FIRST}(X)$, and b can FOLLOW right after Y

G

Y
Y
c
eof

Again, The Parse tree Perspective Consider the Trees

FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε, then ε is in $\operatorname{FIRST}(X)$.

Again, The Parse tree Perspective Consider the Trees

FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε, then ε is in $\operatorname{FIRST}(X)$.

FOLLOW(X): The set of terminals that begin strings derivable right after X, and EOF if there could be no terminals after subtree
What does each parse tree say about FOLLOW(A) where S is start?

[^0]
The Importance of FOLLOW
 Building Parser Tables

$$
\begin{aligned}
& S::=X \mathbf{b} \\
& X::=\mathbf{a} \\
& X::=\varepsilon
\end{aligned}
$$

	\mathbf{a}	\mathbf{b}
S	$S::=X \mathbf{b}$	$S::=X \mathbf{b}$
X		

$$
\operatorname{FIRST}(X \mathbf{b})=\{\mathbf{a}, \mathbf{b}\}
$$

The Importance of FOLLOW

Building Parser Tables

$$
\begin{array}{|l|c|c|c|}
& & \mathbf{a} & \mathbf{b} \\
\hline & & S::=X \mathbf{b} & S::=X \mathbf{b} \\
\hline X::=X \mathbf{b} \\
X::=\mathbf{a} \\
\hline
\end{array}
$$

$\operatorname{FIRST}(X \mathbf{b})=\{\mathbf{a}, \mathbf{b}\}$

$$
\operatorname{FIRST}(\mathrm{a})=\{\mathbf{a}\}
$$

The Importance of FOLLOW

Building Parser Tables

$\begin{aligned} & \mathrm{S}::=X \mathbf{b} \\ & \mathrm{X}::=\mathbf{a} \end{aligned}$	S	$X \mathrm{~b}$	X b	$\begin{aligned} & \operatorname{FIRST}(X \mathbf{b})=\{\mathbf{a}, \mathbf{b}\} \\ & \operatorname{FIRST}(\mathbf{a})=\{\mathbf{a}\} \end{aligned}$
X $\mathrm{X}:=\mathrm{=}=\boldsymbol{\mathrm { a }}$	X	a		We need to know that b follows X to place this

The Importance of FOLLOW

Building Parser Tables

$$
S::=X \mathbf{b}
$$

$$
\begin{aligned}
& X::=\mathbf{a} \\
& X::=\varepsilon
\end{aligned}
$$

	\mathbf{a}	\mathbf{b}	
\mathbf{S}	$X \mathbf{b}$	$X \mathbf{b}$	FIRST $(X \mathbf{b})=\{\mathbf{a}, \mathbf{b}\}$ FIRST $(\mathbf{a})=\{\mathbf{a}\}$
X	\mathbf{a}	ε	We need to know that \mathbf{b} follows X to place this

$$
\begin{aligned}
& S::=X \\
& X::=\mathrm{a} X \\
& X::=\varepsilon
\end{aligned}
$$

	a	EOF
S	X	X
X		
	a X	ε

FOLLOW Sets, Formally
 \section*{Building Parser Tables}

Example: Building Follow Sets Building Parser Tables

FOLLOW (X) for each nonterminal X

C_{1} : If X is the start nonterminal, add eof
For all $Z::=\alpha X \beta$ (where α and/or β may be empty)
$\mathrm{C}_{2}: \operatorname{Add} \operatorname{FIRST}(\beta)-\{\varepsilon\}$
C_{3} : If ε is in $\operatorname{FIRST}(\beta)$ add $\operatorname{FOLLOW}(Z)$
C_{4} : If β is empty add FOLLOW(Z)
Repeat for each nonterminal until saturation

$$
\begin{aligned}
& \text { Grammar } \\
& \text { (1) } S:=\mathbf{a} \\
& \text { (2 } S::=\mathbf{b} R \\
& \text { (3 } Q::=\varepsilon \\
& \text { (4 } R:=Q \operatorname{c} \\
& \text { © } R::=Q S \\
& \text { © } R::=Q Q
\end{aligned}
$$

FOLLOW (X) for nonterminal X

C_{1} : If X is the start nonterminal, add eof
For all $Z::=\alpha X \beta$ (where α and/or β may be empty) $\mathrm{C}_{2}: \operatorname{Add} \operatorname{FIRST}(\beta)-\{\varepsilon\}$
C_{3} : If ε is in $\operatorname{FIRST}(\beta)$ add $\operatorname{FOLLOW}(Z)$ C_{4} : If β is empty add FOLLOW(Z)
Repeat for each nonterminal until saturation

```
Building Follow(S) (S in for \(X\) )
FIRST(S) = {a,b }
FIRST(Q) ={\varepsilon}
FIRST(R)={c,a,b, \varepsilon}
FIRST(Q c) ={ c }
FIRST(QS)={a,b }
    FIRST(QQ)={\varepsilon}
=>FOLLOW(S) = { eof }
FOLLOW(Q)
FOLLOW(R)
C}\mp@subsup{C}{1}{}:S\mathrm{ is the start nonterminal, so add eof
R ::= QS
\(C_{2}: \beta\) is empty, so add nothing
\(C_{3}: \quad \beta\) is empty, so \(N / A\)
\(C_{4}: \quad \beta\) is empty, so add \(\operatorname{FOLLOW}(R)\), which is currently nothing
```

Grammar
(1) $S::=\mathbf{a}$
(2) $S::=\mathbf{b} R$
(3) $Q::=\varepsilon$
(4) $R::=Q c$
(5) $R::=Q S$
© $R::=Q Q$

FOLLOW (X) for nonterminal X
C_{1} : If X is the start nonterminal, add eof
For all $Z::=\alpha X \beta$ (where α and/or β may be empty) $\mathrm{C}_{2}: \operatorname{Add} \operatorname{FIRST}(\beta)-\{\varepsilon\}$
C_{3} : If ε is in $\operatorname{FIRST}(\beta)$ add $\operatorname{FOLLOW}(Z)$
C_{4} : If β is empty add FOLLOW(Z)
Repeat for each nonterminal until saturation
Building Follow(Q) (Q in for X)
C_{1} : N/A (Q not the start nonterminal)

$$
\operatorname{FIRST}(S)=\{a, b\}
$$

$$
\operatorname{FIRST}(Q)=\{\varepsilon\}
$$

$$
\operatorname{FIRST}(\mathrm{R})=\{\mathbf{c}, \mathbf{a}, \mathbf{b}, \varepsilon\}
$$

$$
\operatorname{FIRST}(Q \mathbf{c})=\{c\}
$$

$$
\operatorname{FIRST}(Q S)=\{a, b\}
$$

$$
\operatorname{FIRST}(\mathrm{QQ})=\{\varepsilon\}
$$

$$
\mathrm{R}::=Q \mathrm{~S}
$$

$\mathrm{R}::=\mathrm{Q}$ adds $\{\mathbf{c}\}$

$$
R::=Q Q
$$

$$
\mathrm{R}::=Q Q
$$

$$
\mathrm{C}_{2}: \beta \text { is } \mathbf{c}, \operatorname{add} \operatorname{FIRST}(\mathbf{c})-\varepsilon=\{\mathbf{c}\}
$$

$$
\operatorname{FOLLOW}(S)=\{\text { eof }\}
$$

$$
\mathrm{C}_{3}: \beta \text { is } \mathbf{c}, \varepsilon \notin \operatorname{FIRST}(\mathbf{c}) \text {, so } \mathrm{N} / \mathrm{A}
$$

\Rightarrow FOLLOW(Q)
FOLLOW(R)

$$
C_{4}: \beta \text { is not empty, so } N / A
$$

Grammar
(1) $S::=\mathbf{a}$
(2) $S::=\mathbf{b} R$
(3) $Q::=\varepsilon$
(4) $R::=Q c$
(5) $R::=Q S$
© $R::=Q Q$

FOLLOW (X) for nonterminal X

C_{1} : If X is the start nonterminal, add eof
For all $Z::=\alpha X \beta$ (where α and/or β may be empty) $\mathrm{C}_{2}: \operatorname{Add} \operatorname{FIRST}(\beta)-\{\varepsilon\}$
C_{3} : If ε is in $\operatorname{FIRST}(\beta)$ add $\operatorname{FOLLOW}(Z)$
C_{4} : If β is empty add FOLLOW(Z)
Repeat for each nonterminal until saturation

Building Follow(Q) (Q in for X)

$$
\begin{aligned}
& \operatorname{FIRST}(S)=\{a, b\} \\
& \operatorname{FIRST}(Q)=\{\varepsilon\} \\
& \operatorname{FIRST}(R)=\{c, a, b, \varepsilon\} \\
& \operatorname{FIRST}(Q \mathbf{c})=\{c\} \\
& \operatorname{FIRST}(Q S)=\{a, b\} \\
& \operatorname{FIRST}(Q Q)=\{\varepsilon\} \\
& \operatorname{FOLLOW}(S)=\{\text { eof }\}
\end{aligned}
$$

$$
\mathrm{C}_{1}: \mathrm{N} / \mathrm{A} \text { (} Q \text { not the start nonterminal) }
$$

\Rightarrow FOLLOW(Q)

$$
\begin{array}{ll}
R::=Q S \text { adds }\{\mathbf{a}, \mathbf{b}\} & \mathrm{C}_{2}: \beta \text { is } S, \operatorname{FIRST}(S)-\varepsilon=\{\mathbf{a}, \mathbf{b}\} \\
\mathrm{R}::=Q Q & \mathrm{C}_{3}: \beta \text { is } S, \varepsilon \notin \operatorname{FIRST}(S) \text {, so N/A } \\
& \mathrm{C}_{4}: \beta \text { is not empty, so N/A }
\end{array}
$$

Grammar
(1) $S::=\mathbf{a}$
(2) $S::=\mathbf{b} R$
(3) $Q::=\varepsilon$
(4) $R::=Q c$
(5) $R::=Q S$
© $R::=Q Q$

FOLLOW (X) for nonterminal X

C_{1} : If X is the start nonterminal, add eof
For all $Z::=\alpha X \beta$ (where α and/or β may be empty) $\mathrm{C}_{2}: \operatorname{Add} \operatorname{FIRST}(\beta)-\{\varepsilon\}$
C_{3} : If ε is in $\operatorname{FIRST}(\beta)$ add $\operatorname{FOLLOW}(Z)$
C_{4} : If β is empty add FOLLOW(Z)
Repeat for each nonterminal until saturation
Building Follow(Q) (Q in for X)

$$
\operatorname{FIRST}(S)=\{a, b\}
$$

$$
\operatorname{FIRST}(Q)=\{\varepsilon\}
$$

$$
\operatorname{FIRST}(\mathrm{R})=\{\mathbf{c}, \mathbf{a}, \mathbf{b}, \varepsilon\}
$$

$$
\operatorname{FIRST}(Q \mathbf{c})=\{c\}
$$

$$
\operatorname{FIRST}(Q S)=\{a, b\}
$$

$$
\operatorname{FIRST}(Q Q)=\{\varepsilon\}
$$

$$
\text { FOLLOW(S) }=\{\text { eof }\}
$$

\Rightarrow FOLLOW(Q)
FOLLOW(R)
$C_{1}: N / A(Q$ not the start nonterminal)

Rules of the form $\mathrm{Z}::=\alpha \times \beta$
 $$
\mathrm{R}::=Q \mathbf{c} \quad \text { adds }\{\mathbf{c}\}
$$

$$
\mathrm{R}::=Q \mathrm{~S} \text { adds }\{\mathbf{a}, \mathbf{b}\}
$$

$$
\mathrm{C}_{2}: \quad \beta \text { is } Q, \operatorname{FIRST}(Q)-\varepsilon=\{ \}
$$

$$
R::=Q Q \text { adds }\}
$$

$$
C_{3}: \beta \text { is } Q, Z \text { is } R, \varepsilon \in \operatorname{FIRST}(Q) \text {, }
$$

$$
\text { add FOLLOW }(R)=\{ \}
$$

C_{4} : β is not empty, so N/A

Grammar
(1) $S::=\mathbf{a}$
(2) $S::=\mathbf{b} R$
(3) $Q::=\varepsilon$
(4) $R::=Q c$
(5) $R::=Q S$
© $R::=Q Q$

$$
\operatorname{FIRST}(S)=\{a, b\}
$$

$$
\operatorname{FIRST}(Q)=\{\varepsilon\}
$$

$$
\operatorname{FIRST}(R)=\{\mathbf{c}, \mathbf{a}, \mathbf{b}, \varepsilon\}
$$

$$
\operatorname{FIRST}(Q \mathbf{c})=\{c\}
$$

$$
\operatorname{FIRST}(Q S)=\{a, b\}
$$

$$
\operatorname{FIRST}(Q Q)=\{\varepsilon\}
$$

$$
\text { FOLLOW }(S)=\{\text { eof }\}
$$

\Rightarrow FOLLOW(Q)

FOLLOW (X) for nonterminal X
C_{1} : If X is the start nonterminal, add eof
For all $Z::=\alpha X \beta$ (where α and/or β may be empty) $\mathrm{C}_{2}: \operatorname{Add} \operatorname{FIRST}(\beta)-\{\varepsilon\}$
C_{3} : If ε is in $\operatorname{FIRST}(\beta)$ add $\operatorname{FOLLOW}(Z)$
C_{4} : If β is empty add FOLLOW(Z)
Repeat for each nonterminal until saturation
Building Follow(Q) (Q in for X)
C_{1} : N/A (Q not the start nonterminal)

$$
\begin{aligned}
& R::=Q S \text { adds }\{\mathbf{a}, \mathbf{b}\} \\
& R::=Q Q \text { adds }\} \\
& \mathrm{R}::=Q \text { Q adds }\} \\
& C_{4}: \quad \beta \text { is not empty, } Z \text { is } R \text {, } \\
& \text { add } \operatorname{FOLLOW}(\mathrm{R})=\{ \}
\end{aligned}
$$

Grammar
(1) $S::=\mathbf{a}$
(2) $S::=\mathbf{b} R$
(3) $Q::=\varepsilon$
(4) $R::=Q c$
(5) $R::=Q S$
© $R::=Q Q$

FOLLOW (X) for nonterminal X
C_{1} : If X is the start nonterminal, add eof
For all $Z::=\alpha X \beta$ (where α and/or β may be empty) $\mathrm{C}_{2}: \operatorname{Add} \operatorname{FIRST}(\beta)-\{\varepsilon\}$
C_{3} : If ε is in $\operatorname{FIRST}(\beta)$ add $\operatorname{FOLLOW}(Z)$
C_{4} : If β is empty add FOLLOW(Z)
Repeat for each nonterminal until saturation
Building Follow(Q) (Q in for X)
$\operatorname{FIRST}(\mathrm{Q})=\{\varepsilon\}$
C_{1} : N / A (Q not the start nonterminal)
$\operatorname{FIRST}(R)=\{\mathbf{c}, \mathbf{a}, \mathbf{b}, \varepsilon\}$
Rules of the form $Z::=\alpha \times \beta$
$\operatorname{FIRST}(\mathrm{Q} \mathbf{c})=\{\mathrm{C}\}$

$$
\text { FOLLOW(S) }=\{\text { eof }\}
$$

$$
\begin{aligned}
& \mathrm{R}::=Q \mathbf{c} \text { adds }\{\mathbf{c}\} \\
& \mathrm{R}::=Q \mathrm{~S} \text { adds }\{\mathbf{a}, \mathbf{b}\} \\
& \mathrm{R}::=Q Q \text { adds }\} \\
& \mathrm{R}::=Q Q \quad \text { adds }\}
\end{aligned}
$$

$\Rightarrow \operatorname{FOLLOW}(Q)=\{\mathbf{c}, \mathbf{a}, \mathrm{b}\}$
FOLLOW(R)

Grammar
(1) $S::=\mathbf{a}$
(2) $S::=\mathbf{b} R$
(3) $Q::=\varepsilon$
(4) $R::=Q c$
(5) $R::=Q S$
© $R::=Q Q$

$$
\operatorname{FIRST}(S)=\{a, b\}
$$

$$
\operatorname{FIRST}(\mathrm{Q})=\{\varepsilon\}
$$

$$
\operatorname{FIRST}(\mathrm{R})=\{\mathbf{c}, \mathbf{a}, \mathbf{b}, \varepsilon\}
$$

$$
\operatorname{FIRST}(Q c)=\{c\}
$$

$$
\operatorname{FIRST}(Q S)=\{a, b\}
$$

$$
\operatorname{FIRST}(\mathrm{QQ})=\{\varepsilon\}
$$

$$
\operatorname{FOLLOW}(S)=\{\text { eof }\}
$$

$$
\operatorname{FOLLOW}(Q)=\{c, a, b\}
$$

$$
\Rightarrow \text { FOLLOW(R) }
$$

FOLLOW (X) for nonterminal X
C_{1} : If X is the start nonterminal, add eof
For all $Z::=\alpha X \beta$ (where α and/or β may be empty) $\mathrm{C}_{2}: \operatorname{Add} \operatorname{FIRST}(\beta)-\{\varepsilon\}$
C_{3} : If ε is in $\operatorname{FIRST}(\beta)$ add $\operatorname{FOLLOW}(Z)$
C_{4} : If β is empty add FOLLOW(Z)
Repeat for each nonterminal until saturation

Building Follow(R) (R in for X)

C_{1} : N / A (R not the start nonterminal)

Rules of the form $\mathrm{Z}::=\alpha \times \beta$

$$
\mathrm{S}::=\mathbf{b} \Omega \text { adds }\{\text { eof }\}
$$

$C_{2}: \beta$ is empty, add $\}$
$C_{3}: \beta$ is empty, N / A
$\mathrm{C}_{4}: \mathrm{Z}$ is S , add FOLLOW $(\mathrm{S})=\{$ eof $\}$

Grammar
(1) $S::=\mathbf{a}$
(2) $S::=\mathbf{b} R$
(3) $Q::=\varepsilon$
(4) $R::=Q c$
(5) $R::=Q S$
© $R::=Q Q$

FOLLOW (X) for nonterminal X
C_{1} : If X is the start nonterminal, add eof
For all $Z::=\alpha X \beta$ (where α and/or β may be empty) $\mathrm{C}_{2}: \operatorname{Add} \operatorname{FIRST}(\beta)-\{\varepsilon\}$
C_{3} : If ε is in $\operatorname{FIRST}(\beta)$ add $\operatorname{FOLLOW}(Z)$ C_{4} : If β is empty add FOLLOW(Z)
Repeat for each nonterminal until saturation

```
FIRST(S) = {a,b }
FIRST(Q) = {\varepsilon}
FIRST(R)={c,a,b,\varepsilon}
FIRST(Q c) ={ c } S::= b R adds {eof }
FIRST(QS) ={a,b }
FIRST(QQ) ={\varepsilon}
FOLLOW(S) = { eof }
FOLLOW(Q)={c,a,b }
=>FOLLOW(R)={ eof }
```

Grammar
(1) $S::=\mathbf{a}$
(2) $S::=\mathbf{b} R$
(3) $Q::=\varepsilon$
(4) $R::=Q c$
(5) $R::=Q S$
© $R::=Q Q$

FOLLOW (X) for nonterminal X
C_{1} : If X is the start nonterminal, add eof
For all $Z::=\alpha X \beta$ (where α and/or β may be empty) $\mathrm{C}_{2}: \operatorname{Add} \operatorname{FIRST}(\beta)-\{\varepsilon\}$
C_{3} : If ε is in $\operatorname{FIRST}(\beta)$ add $\operatorname{FOLLOW}(Z)$ C_{4} : If β is empty add $\operatorname{FOLLOW}(Z)$
Repeat for each nontermina until saturation

```
    FIRST(S) = {a,b }
    FIRST(Q) = {\varepsilon}
    FIRST(R)={c,a,b, \varepsilon}
    FIRST(Q c) ={ c }
    FIRST(QS) ={a,b }
    FIRST(QQ) ={\varepsilon }
    FOLLOW(S) ={ eof }
    FOLLOW(Q)={c,a,b }
=>FOLLOW(R)={ eof }
```


All done?

Grammar
(1) $S::=\mathbf{a}$
(2) $S::=\mathbf{b} R$
(3) $Q::=\varepsilon$
(4) $R::=Q c$
(5) $R::=Q S$
© $R::=Q Q$

FOLLOW (X) for nonterminal X
C_{1} : If X is the start nonterminal, add eof
For all $Z::=\alpha X \beta$ (where α and/or β may be empty) $\mathrm{C}_{2}: \operatorname{Add} \operatorname{FIRST}(\beta)-\{\varepsilon\}$
C_{3} : If ε is in $\operatorname{FIRST}(\beta)$ add $\operatorname{FOLLOW}(Z)$
C_{4} : If β is empty add FOLLOW(Z)
Repeat for each nonterminal until saturation

```
    FIRST(S) = {a,b }
    FIRST(Q) = {\varepsilon}
    FIRST(R)={c,a,b, \varepsilon}
    FIRST(Q c) ={ c }
    FIRST(Q S) = {a,b }
```

Round 2
FOLLOW(S) $=\{$ eof $\}$
$\operatorname{FOLLOW}(\mathrm{Q})=\{\mathbf{c}, \mathbf{a}, \mathbf{b}$, eof $\}$
FOLLOW $(\mathrm{R})=\{$ eof $\}$

PSA

Run FOLLOW and FIRST

 computations until saturation```
 FIRST(QQ)={\varepsilon}
 FOLLOW(S) = { eof }
 FOLLOW(Q)={c,a,b }
=>FOLLOW(R)={ eof }
```


## Round 3

$$
\text { FOLLOW(S) = \{ eof }\}
$$

$$
\operatorname{FOLLOW}(Q)=\{c, a, b, \text { eof }\}
$$

FOLLOW(R) $=\{$ eof $\}$

## Review: Set Dependencies

## Building LL(!) Selector Table



LL(1) Selector Table Algorithm Building LL(1) Selector Table

```
for each production X : := 人
 for each terminal t in FIRST(\alpha)
 put X : := 人 in Table[X][t]
 if \varepsilon is in FIRST (\alpha)
 for each t in FOLLOW(X)
 put X::=\alpha in Table[X][t]
```

LL(1) Selector Table Algorithm Building LL(1) Selector Table

## Time permitting: Examples



$$
\begin{aligned}
\operatorname{FIRST}(S) & =\{\mathbf{a}, \mathbf{c}, \mathbf{d}\} \\
\operatorname{FIRST}(B) & =\{\mathbf{a}, \mathbf{c}\} \\
\operatorname{FIRST}(D) & =\{\mathbf{d}, \varepsilon\} \\
\operatorname{FIRST}(B \mathbf{c}) & =\{\mathbf{a}, \mathbf{c}\} \\
\operatorname{FIRST}(D B) & =\{\mathbf{d}, \mathbf{a}, \mathbf{c}\} \\
\operatorname{FIRST}(\mathbf{a} \mathbf{b}) & =\{\mathbf{a}\} \\
\operatorname{FIRST}(\mathbf{c} S) & =\{\mathbf{c}\} \\
\operatorname{FOLLOW}(S) & =\{\mathbf{e o f}, \mathbf{c}\} \\
\operatorname{FOLLOW}(B) & =\{\mathbf{c}, \mathbf{e o f}\} \\
\operatorname{FOLLOW}(D) & =\{\mathbf{a}, \mathbf{c}\}
\end{aligned}
$$

For each production $\mathrm{X}::=\alpha$

$$
\mathrm{B}::=\mathbf{a} \mathbf{b} \quad B \quad \mathbf{a} \mathbf{b}
$$

Look at terminals in $\operatorname{FIRST}(\alpha)=\{\mathbf{a}\}$ :
Put B ::= ab @ Table[B][a]
$\varepsilon$ is not $\operatorname{in} \operatorname{FIRST}(\alpha)=\{\mathbf{a}\}:$
Done with this production

```
|Table[X][t]
FIRST (S) = {a,c,d }
FIRST(B) = {a,c}
FIRST(D) = {d, \varepsilon}
FIRST (B c) = {a,c}
FIRST (D B) = {d,a,c}
FIRST (ab) = {a}
FIRST (cS) = {c}
FOLLOW (S) = {eof, c }
FOLLOW (B) = {c, eof }
FOLLOW (D) = {a,c}
For each production \(\mathrm{X}::=\alpha\)
```

$D::=\varepsilon$
D $\varepsilon$

```
Look at terminals in \(\operatorname{FIRST}(\alpha)=\{\varepsilon\}\)
There are none
Because \(\varepsilon\) is in \(\operatorname{FIRST}(\alpha)\)
Look at everything in Follow \((X)=\{\mathbf{a}, \mathbf{c}\}\)
Put D ::= \(\varepsilon\) @ Table[D][a]
Put D ::= \(\varepsilon\) @ Table[D][c]
```

$$
\begin{aligned}
\operatorname{FIRST}(S) & =\{\mathbf{a}, \mathbf{c}, \mathbf{d}\} \\
\operatorname{FIRST}(B) & =\{\mathbf{a}, \mathbf{c}\} \\
\operatorname{FIRST}(D) & =\{\mathbf{d}, \varepsilon\} \\
\operatorname{FIRST}(B \mathbf{c}) & =\{\mathbf{a}, \mathbf{c}\} \\
\operatorname{FIRST}(D B) & =\{\mathbf{d}, \mathbf{a}, \mathbf{c}\} \\
\operatorname{FIRST}(\mathbf{a} \mathbf{b}) & =\{\mathbf{a}\} \\
\operatorname{FIRST}(\mathbf{c} S) & =\{\mathbf{c}\} \\
\operatorname{FOLLOW}(S) & =\{\mathbf{e o f}, \mathbf{c}\} \\
\operatorname{FOLLOW}(B) & =\{\mathbf{c}, \mathbf{e o f}\} \\
\operatorname{FOLLOW}(D) & =\{\mathbf{a}, \mathbf{c}\}
\end{aligned}
$$

For each production $\mathrm{X}::=\alpha$

$$
S::=\mathrm{D} B \quad S \quad D B
$$

Look at terminals in $\operatorname{FIRST}(\alpha)=\{\mathbf{d}, \mathbf{a}, \mathbf{c}\}$
Put S ::= D B @ Table[S][d]
Put S ::= D B @ Table[S][a] Put S ::= D B @ Table[S][c]
$\varepsilon$ is not in $\operatorname{FIRST}(\alpha)=\{\mathbf{d}, \mathbf{a}, \mathbf{c}\}$ :
Done with this production

```
| Table[X][t]
FIRST (S) = {a,c,d }
FIRST(B) = {a,c}
FIRST(D) = {d, \varepsilon}
FIRST (B c) = {a,c}
FIRST (D B) = {d,a,c}
FIRST (ab) = {a}
FIRST (c S) = {c}
FOLLOW (S) = {eof, c }
FOLLOW (B) = {c, eof }
FOLLOW (D) = {a,c}
For each production \(\mathrm{X}::=\alpha\)
```

$S::=\mathrm{BC} \quad S \quad B \mathbf{c}$

Look at terminals in $\operatorname{FIRST}(\alpha)=\{\mathbf{a}, \mathbf{c}\}$
Put S ::= B C @ Table[S][a]
Put S ::= B C @ Table[S][c]
$\varepsilon$ is not in $\operatorname{FIRST}(\alpha)=\{\mathbf{a}\}:$
Done with this production


$$
\begin{aligned}
\operatorname{FIRST}(S) & =\{\mathbf{a}, \mathbf{c}, \mathbf{d}\} \\
\operatorname{FIRST}(B) & =\{\mathbf{a}, \mathbf{c}\} \\
\operatorname{FIRST}(D) & =\{\mathbf{d}, \varepsilon\} \\
\operatorname{FIRST}(B \mathbf{c}) & =\{\mathbf{a}, \mathbf{c}\} \\
\operatorname{FIRST}(D B) & =\{\mathbf{d}, \mathbf{a}, \mathbf{c}\} \\
\operatorname{FIRST}(\mathbf{a} \mathbf{b}) & =\{\mathbf{a}\} \\
\operatorname{FIRST}(\mathbf{c} S) & =\{\mathbf{c}\} \\
\operatorname{FOLLOW}(S) & =\{\mathbf{e o f}, \mathbf{c}\} \\
\operatorname{FOLLOW}(B) & =\{\mathbf{c}, \mathbf{e} \mathbf{o f}\} \\
\text { FOLLOW }(D) & =\{\mathbf{a}, \mathbf{c}\}
\end{aligned}
$$



## Review: Selector Table Dependencies <br> Review Lecture 9 - FIRST Sets



## A Parse Tree Perspective <br> Building LL(1) Selector Table: FIRST sets, single symbol

FIRST(X): The set of terminals that begin strings derivable from $X$, and also, if $X$ can derive $\varepsilon$, then $\varepsilon$ is in $\operatorname{FIRST}(X)$.



[^0]:    If these were the only parse trees, what is FOLLOW(A)?

