University of Kansas | Drew Davidson

CONSTRUCTION

FOLLOW Sets

Building LL(1) Parsers

- Transforming grammars:
 - Left factoring
 - Left-recursion elimination
- Building the selector table
 - FIRST Sets

You Should Know

- The intuition behind FIRST and FOLLOW
- The formal definition of FIRST sets

Parsing

Today's Outline FOLLOW Sets

Building LL(1) Parsers

- LL(1) Game Plan
- Finish up FIRST Sets
- FOLLOW Sets

Perspective: Where we're At LL(1) Game Plan

Parsers are a bit tricky!

 Sadly, you need to know this to build a compiler frontend

The underlying concepts of FIRST and FOLLOW will be useful for LL(1) and other parsers

(We'll talk about 1 other kind

 the LR parsers, which is
 what BISON generates).

What We're Doing: The Big Picture LL(1) Game Plan

What We're Doing: The Big Picture Building the LL(1) Selector Table

LL(1) Selector Table Algorithm

Building LL(1) Selector Table

```
for each production X ::= α
  if t is in FIRST(α)
    put X ::= α in Table[X][t]
  if ε is in FIRST(α)
    for each t in FOLLOW(X)
    put X::= α in Table[X][t]
```

We rely on FIRST sets and FOLLOW sets for table construction But these sets will be useful even beyond the LL parsers

LL(1) Parsers Revisited: Big Picture

LL(1) The Big Picture

Grammar

S ::= X**b**Xbb

X ::= a *X*

| C

Selector Table

	а	b	С
S	P_1	P ₂	P_1
Χ	P_3		P_4

Token stream

a c eof I_1 I_2 I_3 I_4

Predicted Parse Tree

LL(1) Parsers Revisited: Big Picture

LL(1) The Big Picture

Grammar

Selector Table

Token stream

Predicted Parse Tree

LL(1) Parser "Résumé"

- Goals: to expand the leftmost nonterminal
- Skills: always knows the first leaf of the leftmost nonterminal's subtree

LL(1) Parsers Revisited: Big Picture LL(1) The Big Picture

LL(1) Parser "Résumé"

- Goals: to expand the leftmost nonterminal
- Skills: always knows the first leaf of the target nonterminal's subtree

In an LL(1) grammar this is a sufficient skillset!

- Can choose correct production when target's first leaf token is given (FIRST sets)
- Can choose correct production when there is no leaf token based on next subtree over

(FOLLOW sets)

LL(1) The Big Picture

FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε , then ε is in FIRST(X).

Example Grammar Fragment

$$P_3$$
 $Y := ZX$

Does P3 apply to this lookahead?

• Yes, if b is in FIRST(Z)

LL(1) The Big Picture

FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε , then ε is in FIRST(X).

Example Grammar Fragment

Y ::= Z X

- Yes, if b is in FIRST(Z)
- Yes, if ε is in FIRST(Z) and b is in FIRST(X)

LL(1) The Big Picture

FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε , then ε is in FIRST(X).

Example Grammar Fragment

$$P_3$$

Y ::= Z X

- Yes, if b is in FIRST(Z)
- Yes, if ε is in FIRST(Z) and b is in FIRST(X)
- Yes, if ε is in FIRST(Z) and FIRST(X), and b can FOLLOW right after Y

LL(1) The Big Picture

FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε , then ε is in FIRST(X).

Example Grammar Fragment

P₃

Y ::= Z X

- Yes, if b is in FIRST(Z)
- Yes, if ε is in FIRST(Z) and b is in FIRST(X)
- Yes, if ε is in FIRST(Z) and FIRST(X), and b can FOLLOW right after Y

LL(1) The Big Picture

Example Grammar Fragment $\begin{array}{c|cccc}
P_1 & X ::= a & Y & C \\
\hline
P_2 & | & C \\
\hline
P_3 & Y ::= Z & X \\
\hline
P_4 & Z ::= b \\
\hline
P_5 & | & a
\end{array}$

Does P3 apply to this lookahead?

- Yes, if b is in FIRST(Z)
- Yes, if ε is in FIRST(Z) and b is in FIRST(X)
- Yes, if ε is in FIRST(Z) and FIRST(X), and b can FOLLOW right after Y

At what lookahead tokens does P3 apply?

- Those in FIRST(Z)
- If ε is in FIRST(Z), those in FIRST(X)
- If ε is in FIRST(Z) and FIRST(X), those that follow Y

Today's Outline FOLLOW Sets

Building LL(1) Parsers

- LL(1) Game Plan
- Building a Grammar's FIRST sets
- FOLLOW Sets

FIRST Sets: Review what we know

Building a Grammar's FIRST Sets

Building FIRST for a terminal t

 $FIRST(t) = \{ t \}$

Building FIRST for ε

 $FIRST(\varepsilon) = \{ \varepsilon \}$

Building FIRST for a symbol string α

Let α be composed of symbols $\alpha_1 \alpha_2 \dots \alpha_n$

 C_1 : add FIRST(α_1) - ε

C₂: For all k < n: if $\alpha_1 \dots \alpha_{k-1}$ is nullable, add FIRST(α_k) - ε

 C_3 : If $\alpha_1 \dots \alpha_n$ is nullable, add ε

Building FIRST for a nonterminal X

For all productions with X on the LHS and $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ on the RHS

 C_1 : add FIRST(α_1) - ε

C₂: For all k < n: if $\alpha_1 \dots \alpha_{k-1}$ is nullable, add FIRST(α_k) - ε

 C_3 : If $\alpha_1 \dots \alpha_n$ is nullable, add ε

Building FIRST for a nonterminal X

For all productions with X on the LHS (i.e. X ::= α) Add FIRST(α) to FIRST X

FIRST Sets: Review what we know

Building a Grammar's FIRST Sets

Building FIRST for a terminal t

 $FIRST(t) = \{ t \}$

Building FIRST for ε

 $FIRST(\varepsilon) = \{ \varepsilon \}$

Building FIRST for a symbol string α

Let α be composed of symbols $\alpha_1 \alpha_2 \dots \alpha_n$

 C_1 : add FIRST(α_1) - ε

C₂: For all k < n: if $\alpha_1 \dots \alpha_{k-1}$ is nullable, add FIRST(α_k) - ε

 C_3 : If $\alpha_1 \dots \alpha_n$ is nullable, add ε

Mutually recursive (dependency loop)!

This means that there's one additional step we need...

Building FIRST for a nonterminal X

For all productions with X on the LHS (i.e. X ::= α)

Add $FIRST(\alpha)$ to FIRST X

Building FIRST for all Grammar Symbols

Building Grammar's FIRST Sets

For each nonterminal of the grammar

Loop over for all productions (of the form $X := \alpha$, wlog)

Add FIRST(α) to FIRST(X)

(if a set hasn't been computed, use {}, the empty set)

until *saturation* (no set changes)

Tricks for Computing FIRST Sets Building Parser Tables

- Begin by computing the single-symbol FIRST sets for each production's LHS
- Run until saturation
- Can help to work bottom-up
- Compute symbol-string FIRST sets for each production's RHS
- Stay hydrated!

$$S ::= X \mathbf{b} X$$

$$\mid \varepsilon$$

$$X ::= \mathbf{a} X$$

$$\mid \varepsilon$$

Today's Outline FOLLOW Sets

Building LL(1) Parsers

- LL(1) Game Plan
- Building a Grammar's FIRST sets
- FOLLOW Sets

Selector Table Dependencies

Building the Selector Table

```
for each production X ::= α
  if t is in FIRST(α)
    put X ::= α in Table[X][t]
  if ε is in FIRST(α)
    for each t in FOLLOW(X)
      put X::= α in Table[X][t]
```


Follow Set Intuition LL(1) The Big Picture

Example Grammar Fragment

$$P_3$$
 $Y := ZX$

- Yes, if b is in FIRST(Z)
- Yes, if ε is in FIRST(Z) and b is in FIRST(X)
- Yes, if ε is in FIRST(Z) and FIRST(X), and b can FOLLOW right after Y

Again, The Parse tree Perspective Consider the Trees

FIRST(X): The set of terminals that begin strings <u>derivable from</u> X, and also, if X can derive ε , then ε is in FIRST(X).

Again, The Parse tree Perspective Consider the Trees

FIRST(X): The set of terminals that begin strings <u>derivable from</u> X, and also, if X can derive ε , then ε is in FIRST(X).

FOLLOW(X): The set of terminals that begin strings <u>derivable right after</u> X, and **EOF** if there could be *no* terminals after subtree

What does each parse tree say about FOLLOW(A) where 5 is start?

If these were the only parse trees, what is FOLLOW(A)?

{ e, m, f, z, eof }

S	::=	Χ	b
X	::=	a	
X	::=	ε	

	а	b
S	S ::= X b	S ::= X b
X		

S	::=	Χ	b
X	::=	a	
X	::=	ε	

	а	b
S	S ::= X b	S::= X b
X	X ::= a	

$$FIRST(X \mathbf{b}) = \{ \mathbf{a}, \mathbf{b} \}$$

S ::= X **b** X ::= a $X ::= \varepsilon$

We need to know that **b** follows X to place this

S ::= X **b** X ::= a $X ::= \varepsilon$

FIRST(X **b**) = { **a**, **b** }

FIRST(**a**) = { **a** }

We need to know that **b** follows X to place this

S ::= X X ::= a *X* $X ::= \varepsilon$

	а	EOF
S	X	X
X	a <i>X</i>	ε

FOLLOW Sets, Formally Building Parser Tables

FOLLOW(X) =
$$\left\{ t \middle| \left(t \in \Sigma \land S \stackrel{+}{\Rightarrow} \alpha X t \beta \right) \lor \left(t = eof \land S \stackrel{+}{\Rightarrow} \alpha X \right) \right\}$$
also eof when X ends a derivation

Example: Building Follow Sets Building Parser Tables

FOLLOW(X) for each nonterminal X

C₁: If X is the start nonterminal, add **eof**

For all $Z := \alpha X \beta$ (where α and/or β may be empty)

 C_2 : Add FIRST(β) – { ϵ }

 C_3 : If ε is in FIRST(β) add FOLLOW(Z)

 C_4 : If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

<u>Grammar</u>

$$Q := \varepsilon$$

4
$$R := Q c$$

6
$$R ::= Q S$$

6
$$R := Q Q$$

$FIRST(S) = \{a, b\}$

$$FIRST(Q) = \{ \varepsilon \}$$

FIRST(R) = {
$$\mathbf{c}$$
, \mathbf{a} , \mathbf{b} , ε }

$$FIRST(Q c) = \{ c \}$$

$$FIRST(QS) = \{a, b\}$$

FIRST(Q Q) = {
$$\varepsilon$$
 }

FOLLOW(Q)

FOLLOW(R)

FOLLOW(X) for nonterminal X

C₁: If X is the start nonterminal, add **eof**

For all $Z := \alpha \times \beta$ (where α and/or β may be empty)

$$C_2$$
: Add FIRST(β) – { ϵ }

 C_3 : If ε is in FIRST(β) add FOLLOW(Z)

 C_4 : If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

Building Follow(S) (5 in for X)

C₁: S is the start nonterminal, so add **eof**

Rules of the form $Z := \alpha X \beta$

 C_2 : β is empty, so add nothing

 C_3 : β is empty, so N/A

 C_4 : β is empty, so add FOLLOW(R), which is currently nothing

<u>Grammar</u>

3
$$Q := \varepsilon$$

4
$$R := Q c$$

6
$$R ::= Q S$$

6
$$R := Q Q$$

FIRST(S) = { a, b }

$$FIRST(Q) = \{ \varepsilon \}$$

FIRST(R) = {
$$\mathbf{c}$$
, \mathbf{a} , \mathbf{b} , ε }

$$FIRST(Q c) = \{ c \}$$

FIRST(Q Q) = {
$$\varepsilon$$
 }

⇒ FOLLOW(Q)

FOLLOW(X) for nonterminal X

C₁: If X is the start nonterminal, add **eof**

For all $Z := \alpha X \beta$ (where α and/or β may be empty)

$$C_2$$
: Add FIRST(β) – { ϵ }

 C_3 : If ε is in FIRST(β) add FOLLOW(Z)

 C_4 : If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

Building Follow(Q) (Q in for X)

 C_1 : N/A (Q not the start nonterminal)

Rules of the form $Z := \alpha X \beta$

$$R := Q S$$

$$R := Q Q$$

$$R := Q Q$$

C₂:
$$\beta$$
 is **c**, add FIRST(**c**) - ε = { **c** }

C₃:
$$\beta$$
 is **c**, $\varepsilon \notin FIRST(\mathbf{c})$, so N/A

$$C_4$$
: β is not empty, so N/A

Grammar

3
$$Q := \varepsilon$$

4
$$R := Q c$$

6
$$R ::= Q S$$

6
$$R := Q Q$$

$FIRST(S) = \{a, b\}$

$$FIRST(Q) = \{ \varepsilon \}$$

FIRST(R) = {
$$\mathbf{c}$$
, \mathbf{a} , \mathbf{b} , ε }

$$FIRST(Q c) = \{ c \}$$

FIRST(Q Q) = {
$$\varepsilon$$
 }

⇒ FOLLOW(Q)

FOLLOW(X) for nonterminal X

C₁: If X is the start nonterminal, add **eof**

For all $Z := \alpha \times \beta$ (where α and/or β may be empty)

$$C_2$$
: Add FIRST(β) – { ϵ }

 C_3 : If ε is in FIRST(β) add FOLLOW(Z)

 C_4 : If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

Building Follow(Q) (Q in for X)

 C_1 : N/A (Q not the start nonterminal)

Rules of the form $Z := \alpha X \beta$

$$R ::= QS$$
 adds $\{a,b\}$

$$R := Q Q$$

$$R ::= Q \boxed{Q}$$

$$C_2$$
: β is S , FIRST(S) - ε = { \mathbf{a} , \mathbf{b} }

C₃:
$$\beta$$
 is S , $\varepsilon \notin FIRST(S)$, so N/A

$$C_4$$
: β is not empty, so N/A

Grammar

3
$$Q := \varepsilon$$

4
$$R := Q c$$

6
$$R ::= Q S$$

6
$$R := Q Q$$

FOLLOW(X) for nonterminal X

C₁: If X is the start nonterminal, add **eof**

For all $Z := \alpha \times \beta$ (where α and/or β may be empty)

$$C_2$$
: Add FIRST(β) – { ϵ }

 C_3 : If ε is in FIRST(β) add FOLLOW(Z)

 C_4 : If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

$FIRST(S) = \{a, b\}$

$$FIRST(Q) = \{ \varepsilon \}$$

FIRST(R) = {
$$\mathbf{c}$$
, \mathbf{a} , \mathbf{b} , ε }

$$FIRST(Q c) = \{ c \}$$

$$FIRST(QS) = \{a, b\}$$

FIRST(Q Q) = {
$$\varepsilon$$
 }

⇒ FOLLOW(Q)

Building Follow(Q) (Q in for X)

 C_1 : N/A (Q not the start nonterminal)

Rules of the form $Z := \alpha X \beta$

$$R := QS \text{ adds } \{a,b\}$$

$$C_2$$
:

C₂:
$$\beta$$
 is Q , FIRST(Q) - ε = {}

$$R := QQ$$
 adds $\{\}$

C₃:
$$\beta$$
 is Q , Z is R , $\varepsilon \in FIRST(Q)$, add $FOLLOW(R) = { }$

$$R := Q Q$$
 adds $\{\}$

$$C_4$$
: β is not empty, so N/A

Grammar

3
$$Q := \varepsilon$$

4
$$R := Q c$$

6
$$R ::= Q S$$

6
$$R := Q Q$$

Building Follow(Q) (Q in for X)

 C_1 : N/A (Q not the start nonterminal)

$$FIRST(Q) = \{ \varepsilon \}$$

 $FIRST(S) = \{a, b\}$

FIRST(R) = {
$$\mathbf{c}$$
, \mathbf{a} , \mathbf{b} , ε }

$$FIRST(Q c) = \{ c \}$$

FIRST(Q Q) = {
$$\varepsilon$$
 }

FOLLOW(R)

Rules of the form $Z := \alpha X \beta$

$$R := Q c \text{ adds } \{c\}$$

$$R := Q S \text{ adds } \{a,b\}$$

$$R := QQ \text{ adds } \{ \}$$

$$R ::= Q Q \quad adds \{ \}$$

 C_2 : β is empty, so add $\{\}$

 C_3 : β is empty, so N/A

 C_{4} : β is not empty, Z is R, add FOLLOW(R) = { }

For all $Z := \alpha \times \beta$ (where α and/or β may be empty)

 C_2 : Add FIRST(β) – { ϵ }

FOLLOW(X) for nonterminal X

 C_3 : If ε is in FIRST(β) add FOLLOW(Z)

 C_4 : If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

3
$$Q := \varepsilon$$

4
$$R := Q c$$

6
$$R ::= Q S$$

6
$$R := Q Q$$

 $FIRST(S) = \{a, b\}$

 $FIRST(Q) = \{ \varepsilon \}$

FOLLOW(X) for nonterminal X

C₁: If X is the start nonterminal, add **eof**

For all $Z := \alpha \times \beta$ (where α and/or β may be empty)

$$C_2$$
: Add FIRST(β) – { ϵ }

 C_3 : If ε is in FIRST(β) add FOLLOW(Z)

 C_4 : If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

Building Follow(Q) (Q in for X)

 C_1 : N/A (Q not the start nonterminal)

Rules of the form $Z := \alpha X \beta$

$$FIRST(Q c) = \{ C \}$$

FIRST(R) = { \mathbf{c} , \mathbf{a} , \mathbf{b} , ε }

FIRST(Q Q) = {
$$\varepsilon$$
 }

$$\Rightarrow$$
 FOLLOW(Q) = { c, a, b }

$$R ::= Q S \quad adds \{a,b\}$$

$$R := QQ \text{ adds } \{\}$$

$$R := QQ$$
 adds $\{\}$

2
$$S := \mathbf{b} R$$

3
$$Q := \varepsilon$$

4
$$R := Q c$$

6
$$R ::= Q S$$

6
$$R := Q Q$$

FOLLOW(X) for nonterminal X

C₁: If X is the start nonterminal, add **eof**

For all $Z := \alpha X \beta$ (where α and/or β may be empty)

$$C_2$$
: Add FIRST(β) – { ϵ }

 C_3 : If ε is in FIRST(β) add FOLLOW(Z)

 C_4 : If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

$FIRST(S) = \{a, b\}$

$$FIRST(Q) = \{ \varepsilon \}$$

FIRST(R) = {
$$\mathbf{c}$$
, \mathbf{a} , \mathbf{b} , ε }

$$FIRST(Q c) = \{ c \}$$

$$FIRST(QS) = \{a, b\}$$

FIRST(Q Q) = {
$$\varepsilon$$
 }

⇒ FOLLOW(R)

Building Follow(R) (R in for X)

C₁: N/A (R not the start nonterminal)

Rules of the form
$$Z := \alpha X \beta$$

$$S := \mathbf{b} R$$
 adds { \mathbf{eof} }

$$C_2$$
: β is empty, add $\{\}$

$$C_3$$
: β is empty, N/A

$$C_4$$
: Z is S, add FOLLOW(S) = { **eof** }

$$Q := \varepsilon$$

4
$$R := Q c$$

6
$$R := Q S$$

6
$$R := Q Q$$

FOLLOW(X) for nonterminal X

C₁: If X is the start nonterminal, add **eof**

For all $Z := \alpha \times \beta$ (where α and/or β may be empty)

$$C_2$$
: Add FIRST(β) – { ϵ }

 C_3 : If ϵ is in FIRST(β) add FOLLOW(Z)

 C_4 : If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

```
FIRST(S) = \{a, b\}
   FIRST(Q) = \{ \varepsilon \}
   FIRST(R) = \{ c, a, b, \varepsilon \}
   FIRST(Q c) = { c } S ::= \mathbf{b} R adds { \mathbf{eof} }
   FIRST(QS) = \{a, b\}
   FIRST(Q Q) = { \varepsilon }
   FOLLOW(S) = { eof }
   FOLLOW(Q) = { c, a, b }
→ FOLLOW(R) = { eof }
```

Grammar

$$Q := \varepsilon$$

4
$$R := Q c$$

6
$$R := Q S$$

6
$$R := Q Q$$

FOLLOW(X) for nonterminal X

C₁: If X is the start nonterminal, add **eof**

For all $Z := \alpha \times \beta$ (where α and/or β may be empty)

$$C_2$$
: Add FIRST(β) – { ϵ }

 C_3 : If ϵ is in FIRST(β) add FOLLOW(Z)

 C_4 : If β is empty add FOLLOW(Z)

Repeat for each nontermina until saturation

$FIRST(S) = \{a, b\}$

$$FIRST(Q) = \{ \varepsilon \}$$

FIRST(R) = {
$$\mathbf{c}$$
, \mathbf{a} , \mathbf{b} , ε }

$$FIRST(Q c) = \{ c \}$$

$$FIRST(QS) = \{a, b\}$$

FIRST(Q Q) = {
$$\varepsilon$$
 }

All done?

<u>Grammar</u> **1** S ::= a **2** S ::= b F

FOLLOW(X) for nontern

FIRS

C₁: If X is the start i

- $Q : \mathcal{C} : Add FIRST(\beta)$
- **4** R

Recall computing FOLLOW(Q)

We used a set that later changed!

in for

honterminal)

$$m Z := \alpha X \beta$$

\$ Q

FIRST(Co-

FIR

FIRST(O,O)

 $FIRST(Q Q) = \{\}$

FOLLOW(S) = { **eof** }

⇒ FOLLOW(Q)

FOLLOW(R)

R ... | adds {a,b}

 $R := QQ \text{ adds } \{\}$

R ::= Q Q adds { }

 C_2 . β is empty, so add $\{\}$

empty

 C_3 : β is empty, so N/A

C₄: β is not empty, Z is R, add FOLLOW(R) = { }

2
$$S := \mathbf{b} R$$

$$Q := \varepsilon$$

4
$$R := Q c$$

6
$$R := Q S$$

6
$$R := Q Q$$

FOLLOW(X) for nonterminal X

C₁: If X is the start nonterminal, add **eof**

For all $Z := \alpha \times \beta$ (where α and/or β may be empty)

$$C_2$$
: Add FIRST(β) – { ϵ }

 C_3 : If ε is in FIRST(β) add FOLLOW(Z)

 C_4 : If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

$$FIRST(S) = \{a, b\}$$

$$FIRST(Q) = \{ \varepsilon \}$$

FIRST(R) = {
$$\mathbf{c}$$
, \mathbf{a} , \mathbf{b} , ε }

$$FIRST(Q c) = \{ c \}$$

FIRST(Q Q) = {
$$\varepsilon$$
 }

$$FOLLOW(Q) = \{ c, a, b \}$$

<u>PSA</u>

Run FOLLOW and FIRST

computations until saturation

$$FOLLOW(S) = { eof }$$

$$FOLLOW(R) = { eof }$$

Review: Set Dependencies Building LL(!) Selector Table

LL(1) Selector Table Algorithm Building LL(1) Selector Table

```
for each production X ::= α
  for each terminal t in FIRST(α)
    put X ::= α in Table[X][t]
  if ε is in FIRST(α)
    for each t in FOLLOW(X)
    put X::= α in Table[X][t]
```

LL(1) Selector Table Algorithm Building LL(1) Selector Table

Time permitting: Examples

Table[X][t] for each production X ::= α for each terminal t in FIRST(α) put X ::= α in Table[X][t] if ε is in FIRST(α) for each terminal t in FOLLOW(X) put X ::= α in Table[X][t]

<u> </u>	<u>FG</u>	
S	::=	B c D B a b c S d ε
В	::=	ab cS
D	::=	d ε

FIRST (S)	=	{ a, c, d }
FIRST (B)	=	{ a, c }
FIRST (D)	=	{ d , ε }
FIRST (B c)	=	{ a, c }
FIRST (D B)	=	{ d, a, c }
FIRST (a b)	=	{ a }
FIRST (c <i>S</i>)	=	{ c }
FOLLOW (S) :	= { eof, c }

For each production X ::= α

$$B ::= a b \qquad \qquad B \quad a b$$

Look at terminals in $FIRST(\alpha) = \{ a \}$:

$$\varepsilon$$
 is not in FIRST(α) = { **a** }:

Done with this production

Table[X][t] for each production X ::= α for each terminal t in FIRST(α) put X ::= α in Table[X][t] if ε is in FIRST(α) for each terminal t in FOLLOW(X) put X ::= α in Table[X][t]

<u>C</u>	FG	
S	::=	B c D B
В	::=	ab cS
D	::=	d ε

FIRST (S)	=	{ a, c, d }
FIRST (B)	=	{ a, c }
FIRST (D)	=	{ d , ε }
FIRST (B c)	=	{ a, c }
FIRST (D B)	=	{ d, a, c }
FIRST (a b)	=	{ a }
FIRST (c <i>S</i>)	=	{ c }
FOLLOW (C)		(f -)

For each production X ::= α

$$D ::= \varepsilon$$

D
$$\varepsilon$$

Look at terminals in FIRST(α) = { ε }

There are none

Because ε is in FIRST(α)

Look at everything in Follow(X) = { a, c }

Put D ::= ε @ Table[D][a]

Put D ::= ε @ Table[D][c]

Table[X][t] for each production X ::= α for each terminal t in FIRST(α) put X ::= α in Table[X][t] if ε is in FIRST(α) for each terminal t in FOLLOW(X) put X ::= α in Table[X][t]

FIRST (S) =	{ a, c, d }
FIRST (B) =	{ a, c }
FIRST (D) =	{ d , ε }
FIRST (B c) =	{ a, c }
FIRST (D B) =	{ d , a , c }
FIRST (a b) =	{ a }
FIRST (c S) =	{ c }
FOLLOW (C)	(f -)

	а	b	С	d	eof
S	D B		D B		
В	a b				
D	ε		ε		

For each production
$$X := \alpha$$

 $S := D B$ $S D B$

Look at terminals in FIRST(
$$\alpha$$
) = { **d, a, c** }

$$\varepsilon$$
 is not in FIRST(α) = { **d**, **a**, **c** }:

Done with this production

Table[X][t] for each production X ::= α for each terminal t in FIRST(α) put X ::= α in Table[X][t] if ε is in FIRST(α) for each terminal t in FOLLOW(X) put X ::= α in Table[X][t]

FIRST (S)	=	{ a, c, d }
FIRST (B)	=	{ a, c }
FIRST (D)	=	{ d , ε }
FIRST (B c)	=	{ a, c }
FIRST (DB)	=	{ d, a, c }
FIRST (a b)	=	{ a }
FIRST (c <i>S</i>)	=	{ c }

	а	b	С	d	eof
c	D B		D B		
S	В с		Вс		
В	a b				
D	ε		ε		

For each production
$$X := \alpha$$

 $S := B \mathbf{c}$ $S B \mathbf{c}$

Look at terminals in FIRST(
$$\alpha$$
) = { **a**, **c** }

$$\varepsilon$$
 is not in FIRST(α) = { **a** }:

Done with this production

Review: Selector Table Dependencies

Review Lecture 9 – FIRST Sets

A Parse Tree Perspective Building LL(1) Selector Table: FIRST sets, single symbol

FIRST(X): The set of terminals that begin strings derivable from X, and also, if X can derive ε , then ε is in FIRST(X).

