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Review – FIRST Sets

Building LL(1) Parsers

• Transforming grammars:
• Left factoring

• Left-recursion elimination

• Building the selector table
• FIRST Sets
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Parsing

You Should Know

• The intuition behind FIRST and FOLLOW
• The formal definition of FIRST sets



FOLLOW Sets

Building LL(1) Parsers

• LL(1) Game Plan

• Finish up FIRST Sets

• FOLLOW Sets
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Parsing



LL(1) Game Plan

Parsers are a bit tricky!

• Sadly, you need to know this 
to build a compiler frontend

The underlying concepts of 
FIRST and FOLLOW will be 
useful for LL(1) and other 
parsers

• (We’ll talk about 1 other kind 
– the LR parsers, which is 
what BISON generates).
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LL(1) Game Plan
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Selector Table

into 

this…

S ::= ( S )
| { S }
| 𝜺

Example Grammar Turning 

this…

so we can do 

this…



Building the LL(1) Selector Table
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FIRST(α)FIRST(X) FOLLOW(X) Fill Cells

Step 1. Step 2. Step 3.

Build FIRST sets
for single 

symbols of 
the grammar

Build FIRST sets 
for RHS symbols 
strings

Build FOLLOW sets 
for Nonterminals

Place productions

Step 4.



Building LL(1) Selector Table
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for each production X ::= α

if t is in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each t in FOLLOW(X)

put X::= α in Table[X][t]

We rely on FIRST sets and FOLLOW sets for table construction
But these sets will be useful even beyond the LL parsers 



LL(1) The Big Picture
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pop X
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Accept!

pop c
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LL(1) The Big Picture

• Goals: to expand the leftmost nonterminal

• Skills: always knows the first leaf of the 
leftmost nonterminal’s subtree
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a b c

S

X

S ::= X b X
| b b

X ::= a X
| c

Grammar

P1

P2

P3

P4

P1 P1P2

P3 P4

Seof

X b X

c Xa

c

I0 I1 I2 I3 I4

Predicted Parse TreeToken streamSelector Table

b a cc

LL(1) Parser “Résumé”



LL(1) The Big Picture

• Goals: to expand the leftmost nonterminal

• Skills: always knows the first leaf of the 
target nonterminal’s subtree
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LL(1) Parser “Résumé”

In an LL(1) grammar this is a sufficient skillset!

• Can choose correct production when target’s 
first leaf token is given

• Can choose correct production when there is 
no leaf token based on next subtree over

(FIRST sets)

(FOLLOW sets)



LL(1) The Big Picture
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Y ::= Z XExample Grammar Fragment P3

Syntax Stack Look ahead

eof

Y

b

c

Does P3 apply to this lookahead?

• Yes, if b is in FIRST(Z)

Y

Z X

b

Y

Z X

b

R a

FIRST(X): The set of terminals that begin strings derivable from X, 
and also, if X can derive ε, then ε is in FIRST(X).



LL(1) The Big Picture
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Y ::= Z XExample Grammar Fragment P3

Syntax Stack Look ahead

eof

Y

b

c

Does P3 apply to this lookahead?

• Yes, if b is in FIRST(Z)

• Yes, if 𝜀 is in FIRST(Z) and b is in FIRST(X)

Y

Z X

𝜀

Y

Z X

b

R ab 𝜀

FIRST(X): The set of terminals that begin strings derivable from X, 
and also, if X can derive ε, then ε is in FIRST(X).



LL(1) The Big Picture
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Y ::= Z XExample Grammar Fragment P3

Syntax Stack Look ahead

eof

Y

b

c

Does P3 apply to this lookahead?

• Yes, if b is in FIRST(Z)

• Yes, if 𝜀 is in FIRST(Z) and b is in FIRST(X)

• Yes, if 𝜀 is in FIRST(Z) and FIRST(X), 
and b can FOLLOW right after Y

Y

Z X

𝜀

G

b

𝜀

Y

Z X

𝜀

G

b

𝜀

Q

𝜀

FIRST(X): The set of terminals that begin strings derivable from X, 
and also, if X can derive ε, then ε is in FIRST(X).



LL(1) The Big Picture
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Y ::= Z XExample Grammar Fragment P3

Syntax Stack Look ahead

eof

Y

b

c

Does P3 apply to this lookahead?

• Yes, if b is in FIRST(Z)

• Yes, if 𝜀 is in FIRST(Z) and b is in FIRST(X)

• Yes, if 𝜀 is in FIRST(Z) and FIRST(X), 
and b can FOLLOW right after Y

We’re interested in 
a more general 

question…

FIRST(X): The set of terminals that begin strings derivable from X, 
and also, if X can derive ε, then ε is in FIRST(X).



LL(1) The Big Picture
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Y ::= Z XExample Grammar Fragment P3

P4

Syntax Stack Look ahead

eof

Y

b

Z ::= b

P5

X ::= a Y c
| c

P1

P2

c

|   a

Does P3 apply to this lookahead?

• Yes, if b is in FIRST(Z)

• Yes, if 𝜀 is in FIRST(Z) and b is in FIRST(X)

• Yes, if 𝜀 is in FIRST(Z) and FIRST(X), 
and b can FOLLOW right after Y

At what lookahead tokens does P3 apply?

• Those in FIRST(Z)

• If 𝜀 is in FIRST(Z), those in FIRST(X)

• If 𝜀 is in FIRST(Z) and FIRST(X), 
those that follow Y

Syntax 
Stack

Look 
ahead

eof

Y

???

c



FOLLOW Sets

Building LL(1) Parsers

• LL(1) Game Plan

• Building a Grammar’s FIRST sets

• FOLLOW Sets
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Parsing



Building a Grammar’s FIRST Sets
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Building FIRST for a terminal t

FIRST(t) = { t }

Building FIRST for a nonterminal X
For all productions with X on the LHS (i.e. X ::= α)

Add FIRST(α) to FIRST X

Building FIRST for a symbol string α
Let α be composed of symbols α1 α2 … αn

C1: add FIRST(α1) - 𝜀
C2: For all k < n: if α1 … αk-1 is nullable, add FIRST(αk) - 𝜀
C3: If α1 … αn is nullable, add 𝜀

Building FIRST for a nonterminal X
For all productions with X on the LHS and α = α1 α2 … αn on the RHS

C1: add FIRST(α1) - 𝜀
C2: For all k < n: if α1 … αk-1 is nullable, add FIRST(αk) - 𝜀
C3: If α1 … αn is nullable, add 𝜀

Building FIRST for 𝜀

FIRST(𝜀) = { 𝜀 }



Building a Grammar’s FIRST Sets
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Building FIRST for a terminal t

FIRST(t) = { t }

Building FIRST for a nonterminal X
For all productions with X on the LHS (i.e. X ::= α)

Add FIRST(α) to FIRST X

Building FIRST for a symbol string α
Let α be composed of symbols α1 α2 … αn

C1: add FIRST(α1) - 𝜀
C2: For all k < n: if α1 … αk-1 is nullable, add FIRST(αk) - 𝜀
C3: If α1 … αn is nullable, add 𝜀

Building FIRST for 𝜀

FIRST(𝜀) = { 𝜀 }

Mutually recursive (dependency loop)!
This means that there’s one additional step we need…



Building Grammar’s FIRST Sets

19

For each nonterminal of the grammar

Loop over for all productions (of the form X ::= α, wlog)

Add FIRST(α) to FIRST(X)

(if a set hasn’t been computed, use {}, the empty set)

until saturation (no set changes)

P ::= Q 1
|  a

Q ::= P 0
|  b

1

P

Q

P 0

a

FIRST(P) ⊆ FIRST(Q) ⊆ FIRST(P)

1

P

Q

b



• Begin by computing the 
single-symbol FIRST sets for 
each production’s LHS

• Run until saturation

• Can help to work bottom-up

• Compute symbol-string FIRST 
sets for each production’s RHS

• Stay hydrated!
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S ::= X b X
| 𝜀

X ::= a X
| 𝜀



FOLLOW Sets

Building LL(1) Parsers

• LL(1) Game Plan

• Building a Grammar’s FIRST sets

• FOLLOW Sets
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for each production X ::= α

if t is in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each t in FOLLOW(X)

put X::= α in Table[X][t]

FIRST(α)FIRST(X) FOLLOW(X) Fill Cells

LHS FIRST sets RHS FIRST sets FOLLOW sets Place productions



LL(1) The Big Picture
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Y ::= Z XExample Grammar Fragment P3

Syntax Stack Look ahead

eof

Y

b

c

Does P3 apply to this lookahead?

• Yes, if b is in FIRST(Z)

• Yes, if 𝜀 is in FIRST(Z) and b is in FIRST(X)

• Yes, if 𝜀 is in FIRST(Z) and FIRST(X), 
and b can FOLLOW right after Y

Y

Z X

𝜀

G

b

𝜀

Y

Z X

𝜀

G

b

𝜀

Q

𝜀



Live Assignments
P1
H2

24

A

eY

d eZ

kb

S

A

f
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f𝜀

S

A

b p

S

n e A

PT

𝜀 𝜀

S

b ∈ FIRST(A)

A

RZ M

g𝜀

S

𝜀

b ∈ FIRST(A) f ∈ FIRST(A) g ∈ FIRST(A) 𝜀 ∈ FIRST(A)

FIRST(X): The set of terminals that begin strings derivable from X, 
and also, if X can derive ε, then ε is in FIRST(X).



Live Assignments
P1
H2
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FIRST(X): The set of terminals that begin strings derivable from X, 
and also, if X can derive ε, then ε is in FIRST(X).

FOLLOW(X): The set of terminals that begin strings derivable right after X, 
and EOF if there could be no terminals after subtree

If these were the only parse trees, what is FOLLOW(A)?

Yields { e } Yields { m } Yields { f } Yields { z } Yields { eof } Yields { eof }

What does each parse tree say about FOLLOW(A) where S is start?

{ e, m, f, z, eof }
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b

R
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A
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𝜀 𝜀
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Live Assignments
P1
H2
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S ::= X b
X ::= a
X ::= 𝜀

a b

S

X

S ::= X b S ::= X b FIRST(X b) = { a, b } 



Live Assignments
P1
H2
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S ::= X b
X ::= a
X ::= 𝜀

a b

S

X

S ::= X b

X ::= a

S::= X b FIRST(X b) = { a, b } 

FIRST(a) = { a } 



Live Assignments
P1
H2
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S ::= X b
X ::= a
X ::= 𝜀

a b

S

X

X b

a 𝜀

X b FIRST(X b) = { a, b } 

FIRST(a) = { a } 

We need to know that 

b follows X 
to place this



Live Assignments
P1
H2
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S ::= X b
X ::= a
X ::= 𝜀

a b

S

X

X b

a 𝜀

X b FIRST(X b) = { a, b } 

FIRST(a) = { a } 

We need to know that 

b follows X 
to place this

S ::= X
X ::= a X
X ::= 𝜀

a EOF

S

X

X

a X

X

𝜀



FOLLOW(X) =

30

t t ∈ Σ ∧ S ֜
+

αXtβ ∨ (t = 𝐞𝐨𝐟 ∧ S ֜
+

αX)

Those terminals derivable immediately after X

also eof when X ends a derivation
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FOLLOW(X) for each nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation
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Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

Building Follow(S) (S in for X)

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

C1: S is the start nonterminal, so add eof

R emptySQ

Rules of the form Z ::= α X β

R ::= Q S

C2: β is empty, so add nothing

C3: β is empty, so N/A

C4: β is empty, so add FOLLOW(R),
which is currently nothing
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Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

C2: β is c, add FIRST(c) - 𝜀 = { c }

C3: β is c, 𝜀 ∉ FIRST(c), so N/A

C4: β is not empty, so N/A

R empty Q cR ::= Q c

Rules of the form Z ::= α X β

R ::= Q S

R ::= Q Q

R ::= Q Q

adds { c }

Building Follow(Q) (Q in for X)

C1: N/A (Q not the start nonterminal)

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation



34

Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

C2:

C3:

C4:

R empty Q S

β is S, FIRST(S) - 𝜀 = { a, b }

β is S, 𝜀 ∉ FIRST(S), so N/A

β is not empty, so N/A

R ::= Q c

Rules of the form Z ::= α X β

R ::= Q S

R ::= Q Q

R ::= Q Q

adds { c }

adds {a,b}

Building Follow(Q) (Q in for X)

C1: N/A (Q not the start nonterminal)

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation
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Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

C2:

C3:

C4:

R empty Q Q

β is Q, FIRST(Q) - 𝜀 = { }

β is not empty, so N/A

β is Q, Z is R, 𝜀 ∈ FIRST(Q), 
add FOLLOW(R) = { }

R ::= Q c

Rules of the form Z ::= α X β

R ::= Q S

R ::= Q Q

R ::= Q Q

adds { c }

adds {a,b}

adds { }

adds { }

Building Follow(Q) (Q in for X)

C1: N/A (Q not the start nonterminal)

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation
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Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

C2:

C3:

C4:

β is empty, so add { }

β is not empty, Z is R, 
add FOLLOW(R) = { }

β is empty, so N/A

R emptyQQR ::= Q c

Rules of the form Z ::= α X β

R ::= Q S

R ::= Q Q

R ::= Q Q

adds { c }

adds {a,b}

adds { }

adds { }

Building Follow(Q) (Q in for X)

C1: N/A (Q not the start nonterminal)

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation
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Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { C }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

=  { c, a, b }

Building Follow(Q) (Q in for X)

R ::= Q c

Rules of the form Z ::= α X β

C1: N/A (Q not the start nonterminal)

R ::= Q S

R ::= Q Q

R ::= Q Q

adds { c }

adds {a,b}

adds { }

adds { }

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation
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Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

Building Follow(R) (R in for X)

S ::= b R

Rules of the form Z ::= α X β
C1: N/A (R not the start nonterminal)

= { eof }

=  

adds { eof }

{ c, a, b }

β is empty, add { }

Z is S, add FOLLOW(S) = { eof }

S emptyRb

C2:

C3:

C4:

β is empty, N/A

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation
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Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

S ::= b R

= { eof }

=  

adds { eof }

{ c, a, b }

= { eof }

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation
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Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

=  { c, a, b }

= { eof }

All done?

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation
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Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { a, b }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

C2:

C3:

C4:

β is empty, so add { }

β is not empty, Z is R, 
add FOLLOW(R) = { }

β is empty, so N/A

R emptyQQR ::= Q c

Rules of the form Z ::= α X β

R ::= Q S

R ::= Q Q

R ::= Q Q

adds { c }

adds {a,b}

adds { }

adds { }

Building Follow(Q) (Q in for X)

C1: N/A (Q not the start nonterminal)

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

Recall computing
FOLLOW(Q)

We used a set that
later changed!
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Grammar
❶ S ::= a
❷ S ::= b R
❸ Q ::= 𝜀
❹ R ::= Q c
❺ R ::= Q S
❻R ::= Q Q

FIRST(R)

FIRST(S) = { a, b }

FIRST(Q) = { 𝜀 }

FIRST(Q c) = { c }

FIRST(Q S) = { a, b }

FIRST(Q Q) = { 𝜀 }

FOLLOW(S)

FOLLOW(Q)

FOLLOW(R)

= { c, a, b, 𝜀}

= { eof }

=  { c, a, b }

= { eof }

FOLLOW(X) for nonterminal X
C1: If X is the start nonterminal, add eof
For all Z ::= α X β (where α and/or β may be empty)

C2: Add FIRST(β) – {ε}
C3: If ε is in FIRST(β) add FOLLOW(Z)
C4: If β is empty add FOLLOW(Z)

Repeat for each nonterminal until saturation

Round 2

FOLLOW(S) = { eof }

FOLLOW(Q) = { c, a, b, eof }

FOLLOW(R) = { eof }

Round 3

FOLLOW(S) = { eof }

FOLLOW(Q) = { c, a, b, eof }

FOLLOW(R) = { eof }

PSA
Run FOLLOW and FIRST 

computations until saturation
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FIRST(α)FIRST(X) FOLLOW(X) Fill Cells

Step 1. Step 2. Step 3.

Build FIRST sets
for single 

symbols of 
the grammar

Build FIRST sets 
for RHS symbols 
strings

Build FOLLOW sets 
for Nonterminals

Place productions

Step 4.
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for each production X ::= α

for each terminal t in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each t in FOLLOW(X)

put X::= α in Table[X][t]
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Time permitting: Examples



a b c d eof

S

B

D
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S ::= B c | D B

B ::= a b | c S

D ::= d | ε

FIRST (S)
FIRST (B)
FIRST (D) { d, ε } 

{ a, c } 
{ a, c, d } 

FIRST (D B) { d, a, c } 
FIRST (B c) { a, c } 

FIRST (a b) { a } 
FIRST (c S) { c } 

=
=

=

=

=
=

=

for each production X ::= α

for each terminal t in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each terminal t in FOLLOW(X)

put X ::= α in Table[X][t]

Table[X][t]

a b

CFG

FOLLOW (S) { eof, c } =

FOLLOW (B) { c, eof }=

FOLLOW (D) { a, c } =

B

For each production X ::= 𝛼

B ::= a b a b

Look at terminals in FIRST(𝛼) = { a }:

Put B ::= a b @ Table[B][a]

𝜀 is not in FIRST(𝛼) = { a }:

Done with this production



a b c d eof

S

B

D
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S ::= B c | D B

B ::= a b | c S

D ::= d | ε

FIRST (S)
FIRST (B)
FIRST (D) { d, ε } 

{ a, c } 
{ a, c, d } 

FIRST (D B) { d, a, c } 
FIRST (B c) { a, c } 

FIRST (a b) { a } 
FIRST (c S) { c } 

=
=

=

=

=
=

=

for each production X ::= α

for each terminal t in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each terminal t in FOLLOW(X)

put X ::= α in Table[X][t]

Table[X][t]

a b

CFG

FOLLOW (S) { eof, c } =

FOLLOW (B) { c, eof }=

FOLLOW (D) { a, c } =

D

Because 𝜀 is in FIRST(𝛼)

Put D ::= 𝜀 @ Table[D][a]

Look at everything in Follow(X) = { a, c }

Put D ::= 𝜀 @ Table[D][c]

For each production X ::= 𝛼

𝜀

𝜀 𝜀

Look at terminals in FIRST(𝛼) = { 𝜀 }

D ::= 𝜀

There are none



a b c d eof

S

B

D
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S ::= B c | D B

B ::= a b | c S

D ::= d | ε

FIRST (S)
FIRST (B)
FIRST (D) { d, ε } 

{ a, c } 
{ a, c, d } 

FIRST (D B) { d, a, c } 
FIRST (B c) { a, c } 

FIRST (a b) { a } 
FIRST (c S) { c } 

=
=

=

=

=
=

=

for each production X ::= α

for each terminal t in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each terminal t in FOLLOW(X)

put X ::= α in Table[X][t]

Table[X][t]

a b

CFG

FOLLOW (S) { eof, c } =

FOLLOW (B) { c, eof }=

FOLLOW (D) { a, c } =

S

Put S ::= D B @ Table[S][d]

For each production X ::= 𝛼

𝜀 𝜀

S ::= D B D B

Look at terminals in FIRST(𝛼) = { d, a, c }

Put S ::= D B @ Table[S][a]

Put S ::= D B @ Table[S][c]

D B D B

𝜀 is not in FIRST(𝛼) = { d, a, c }:

Done with this production



a b c d eof

S

B

D
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S ::= B c | D B

B ::= a b | c S

D ::= d | ε

FIRST (S)
FIRST (B)
FIRST (D) { d, ε } 

{ a, c } 
{ a, c, d } 

FIRST (D B) { d, a, c } 
FIRST (B c) { a, c } 

FIRST (a b) { a } 
FIRST (c S) { c } 

=
=

=

=

=
=

=

for each production X ::= α

for each terminal t in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each terminal t in FOLLOW(X)

put X ::= α in Table[X][t]

Table[X][t]

a b

CFG

FOLLOW (S) { eof, c } =

FOLLOW (B) { c, eof }=

FOLLOW (D) { a, c } =

S

Put S ::= B C @ Table[S][a]

For each production X ::= 𝛼

𝜀 𝜀

S ::= B c B c

Look at terminals in FIRST(𝛼) = { a, c }

Put S ::= B C @ Table[S][c]

D B D B

𝜀 is not in FIRST(𝛼) = { a }:

Done with this production

B c B c



a b c d eof

S

B

D
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S ::= B c | D B

B ::= a b | c S

D ::= d | ε

FIRST (S)
FIRST (B)
FIRST (D) { d, ε } 

{ a, c } 
{ a, c, d } 

FIRST (D B) { d, a, c } 
FIRST (B c) { a, c } 

FIRST (a b) { a } 
FIRST (c S) { c } 

=
=

=

=

=
=

=

for each production X ::= α

for each terminal t in FIRST(α)

put X ::= α in Table[X][t]

if ε is in FIRST(α)

for each terminal t in FOLLOW(X)

put X ::= α in Table[X][t]

Table[X][t]

a b

CFG

FOLLOW (S) { eof, c } =

FOLLOW (B) { c, eof }=

FOLLOW (D) { a, c } =

𝜀 𝜀

D B D B

B c B c

Collision!

Grammar is 

not LL(1)

Another 

Collision!

Grammar is 

still not LL(1)
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FIRST(α)FIRST(X) FOLLOW(X) Fill Cells

Step 1. Step 2. Step 3.

Build FIRST sets
for single 

symbols of 
the grammar

Build FIRST sets 
for RHS symbols 
strings

Build FOLLOW sets 
for Nonterminals

Place productions

Step 4.

TodayLast Time
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P1
H2
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A

eY

d eZ

kb

S

A

f

RZ G

f𝜀

S

A

b p

S

n e A

PT

𝜀 𝜀

S

b ∈ FIRST(A)

A

RZ M

g𝜀

S

𝜀

b ∈ FIRST(A) f ∈ FIRST(A) g ∈ FIRST(A) 𝜀 ∈ FIRST(A)

FIRST(X): The set of terminals that begin strings derivable from X, 
and also, if X can derive ε, then ε is in FIRST(X).
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