Assume an LL(1) parser with...

this selector table:

Check-in

Review: Predictive Parsing

(

)

{

}

S (S)

)

{

}

this syntax stack:

S

)
)

eof

and this (lookahead token:

(

Draw the configuration of the parser after it processes the tokens ()

Housekeeping

Administrivia

Projects

* P1 grades are in

* P2 (nominally) due Wednesday
* P3 out Friday

Trials
* Trial 1 due tonight

Housekeeping

Administrivia

Labs

* Based on the confusion about abstract classes, I've
decided to shift the labs a bit

‘ MM!V n'n!ﬁr— v
cmm

~ ZFIRET Shic

_CONS]

Last Time

Review — Predictive Parsing

Intro to Parsing

* Complexity

A New Type of Language — LL(k)
* Intro

* LL(1) parsing

/ You Should Know \

* What parsing is
* What LL(1) languages are
* How an LL(1) parser operates

_ /

Parsing

Where we Left Oft

Review — Predictive Parsing

The language might be LL(1) ... even when the
grammar is not!

Same language

Grammar 1 Different grammars Grammar 2
®@S:=ab ﬁ @®@S:=aX
® |ac ®X:=b

© X:=c

Predicted Parse Tree Input String Predicted Parse Tree Lookahead
S a S
a

look
look

Candidates
o . 0

Candidates
(1)

Today’s Outline

Preview — FIRST Sets

Transforming Grammars

* Fixing LL(1) “near misses”
Building LL(1) Parsers

* What the selector table needs
* FIRST Sets

Parsing

LL(1) Grammar Limitations

Transforming Grammars — Fixing LL(1) Near Misses

Given a language, we can’t
always find an LL(1)
grammar even if one exists

* Best we can do: simple
transformations that
remove “obvious”
disqualifiers

Checking it a Grammar is LL(1)

Transforming Grammars — Fixing LL(1) Near Misses

If either of the following hold, the
grammar is not LL(1):

* The grammar is left-recursive
* The grammar isn’t left-factored

We can transform some grammars while
preserving the recognized language

(Immediate) Left Recursion

Transforming Grammars — Fixing LL(1) Near Misses

+
e Recall, a grammar such that X = X a is left
recursive

A grammar is immediately left recursive if this
can happen in one step:

A->Aa|pB

Immediate Left Recursion Removal

(Predictive) Parsing - LL(1) Transformations

(for a single immediately left-recursive rule)

A A a - A>BA
A%aA
Arbitrary Strmgs
(nonterminal or terminal) A
A N
/\ B AI
A a N
N a A
A a N
N a AN
A 04
N

B “ﬁ
&

11

Immediate Left Recursion Removal

(Predictive) Parsing - LL(1) Transformations

Exp 1 ;JFactor A BA ,
L = .
Factor

N 2>
\'Q

E = | EXE![— Factor
| [Factor |~_2p
Factor ::= intlit | (Exp)

12

Immediate Left Recursion Removal

(Predictive) Parsing - LL(1) Transformations
Factor

Exp_ ~ Exp’

Exp - Factor f
1~ L ADBA
A>Aa|B T\ an "
2 z | Ex - Factor
Factor

e)
/‘r

Exp Facto,jExp’ | 47

N
|

A
Exp| ::=|EX [— Factor Exp’ : - Facto W
| (Factor_)~_p - g I TZ

Factor ::= intlit | (Exp) Factor ::= intlit | (Exp)

13

Immediate Left Recursion Removal

(Predictive) Parsing - LL(1) Transformations

(general rule)

Given Productions Convert to
A= B A
A= 21 A
. | B, A
n vom A
Aa, .
o, A
A a, o N
m
Ao, c

14

Left Factoring Grammar

(Predictive) Parsing - LL(1) Transformations

* If a nonterminal has (at least) two productions
whose RHS has a common prefix, the grammar is
not |eft factored

(and not an LL(1) grammar)

Exp ::= (Exp)
{ Exp }

()
ab

bb

Left Factoring: Simple Rule

(Predictive) Parsing - LL(1) Transformations

Given Productions Convert to

A5 a \a A—>aA
'1/‘ = Qe 6,18,
Pull suffix into Hdd a new rule

a new nonterminal for suffixes

X:=abX
X :=cd|ef

16

Attempt LL(1) Conversion

(Predictive) Parsing - LL(1) Transformations

Remove immediate left-recursion

Exp|::=|(Exp) Exp ::="(Exp) Exp’
| Exp Exp | () Exp’
| () Exp’ ::=Exp| Exp’
| €
ASBA
A>Aa|p comes A oA

Attempt LL(1) Conversion

(Predictive) Parsing - LL(1) Transformations

Exp ::=(Exp)
| Exp Exp
| ()

Remove immediate left-recursion
«
Exp |::= (|[Exp) Exp’
| (1) Exp'’
Exp’ ::= Exp Exp’

| €

A 9 o Bl ‘ o BZ becomes

Left-factored

Exp| ::=/(Exp"
Exp'' ::= Exp) Exp'
1) Exp’
Exp’ ::= Exp Exp’
| €

A-> oA
A =B, | B,

18

Attempt LL(1) Conversion

(Predictive) Parsing - LL(1) Transformations

Remove immediate left-recursion

4
Exp ::=(Exp) Exp ::= (Exp) Exp’
| Exp Exp | () Exp’

()

Exp’ ::= Exp Exp’

| €

Left-factored

"4
Exp ::=(Exp"
Exp'’ ::= Exp) Exp’
|) Exp’

Exp’ ::= Exp Exp’
| €

19

Current Status

(Predictive) Parsing - LL(1) Transformations

* We’ve removed 2 disqualifiers from LL(1)

 Left-recursive grammar
* Not Left-Factored grammar

Let’s Check on the Parse Tree

LL(1) Grammar Transformations

Exp — Exp - Factor Exp — Factor Exp’
| Factor Exp’ — - Factor Exp’
Factor — intlit | (Exp) | €
Factor — intlit | (Exp)
Exp Exp
Exp - Factor Factor Exp
| /‘\
Exp - | Factor 4 - Factor Exp
| | | ™~
Factor 3 3 - | Factor Exp

| | |

2 4 €

21

Let’s Check on the Parse Tree

LL(1) Grammar Transformations

Exp — Factor Exp’

Exp’” — - Factor Exp’
| €

Factor — intlit | (Exp)

Exp
Factor Exp
| /l\
2
- Factor Exp
| I\
3 - | Factor Exp

I

4 €

Nevermind, We'll Fix Parse Trees Later

LL(1) Grammar Transformations

A (V) 1

Today’s Outline

Lecture 9 — FIRST sets

Transforming Grammars /

* Fixing LL(1) “near misses”

Building LL(1) Parsers

* Understanding LL(1) Selector Tables
* FIRST Sets

Parsing

24

Recall the LL(1) Parser’s Operation

Building LL(1)Selector Table

LL(1)

* Processes Left-to-right

* Leftmost derivation

1 token of lookahead

Predictive Parser: “guess & check”

e Starts at the root, guesses how to unfold a
nonterminal (derivation step)

* Checks that terminals match prediction

Recall the LL(1) Parser’s Operation

Building LL(1)Selector Table

Parser state

Vs

table-driven parser

4

uses a stack to “check” c

match this tree Is in input

S Lookahead: T, (a)
Example LL(1) Grammar: “guess”) 3
Su=aX S=aX (S
X:=balc 5/\)(Lookahead: T, (a)
Example Input: “check” a) 4
a¢ % isin input ‘ S
">« Lookahead: T, (c
T, T, av” (X 2(©)
.
“guess” < e S '
X=>cC
;_6\)(Lookahead: T, (c)
In practice, |
<\ c

S
6\)(Lookahead: T, (c)

|
c”

Q

26

How does the Parser Guess?

Building Parser Tables

The intuition is a bit tricky
* We need to get into the mindset of the parser

Pretend your consciousness has been transported inside an LL(1) parser

27

Become the Parser

Building Parser Tables
Parse in Progress S
You need to unfold a nonterminal X /l\
with lookahead token t a (%) vy Lookahead: T, (t)
v

Assume there’s an X production X ::=m, m,

(where 1r; and 1, are some kind of symbol) Grammar Fragment

How do we know to guess this production? X =10y T,

Case 1: i, subtree
may start with t

S S
a X Y a X Y
T, T, 7'[1Z Ly
J0 [F
1 e
t

Become the Parser

Building Parser Tables
Parse in Progress S
You need to unfold a nonterminal X /l\
with lookahead token t a (%) vy Lookahead: T, (t)
v

Assume there’s an X production X ::=m, m,

(where 1r; and 1, are some kind of symbol) Grammar Fragment

How do we know to guess this production? Xi=1y
Case 1: i, subtree Case 2: 1, subtree may be
may start with t empty and 7, starts with t
a X Y a X Y a X Y

Become the Parser

Building Parser Tables
Parse in Progress S
You need to unfold a nonterminal X /l\
with lookahead token t a (%) vy Lookahead: T, (t)
v

Assume there’s an X production X ::=m, m,

(where 1r; and 1, are some kind of symbol) Grammar Fragment

How do we know to guess this production? X =1y T,
Case 1: i, subtree Case 2: 1, subtree may be Case 3: both m; and m, may be
may start with t empty and 7, starts with t empty and the sibling may
start with t
S S
a X Y a) Y

oSN L[& | &

x|
|

E € t

- AN J

Become the Parser

Building Parser Tables
Parse in Progress S
You need to unfold a nonterminal X /l\
with lookahead token t a (%) vy Lookahead: T, (t)
v

Assume there’s an X production X ::=m, m,

(where 1r; and 1, are some kind of symbol) Grammar Fragment

How do we know to guess this production? X =1y T,
Case 1: i, subtree Case 2: 1, subtree may be Case 3: both m; and m, may be
may start with t empty and 7, starts with t empty and the sibling may
start with t

How can we account for
these cases when

building the parser?

Become the Parser

Building Parser Tables
Parse in Progress S
You need to unfold a nonterminal X /l\
with lookahead token t a (%) vy Lookahead: T, (t)
v

Assume there’s an X production X ::=m, m,

(where 1r; and 1, are some kind of symbol) Grammar Fragment

How do we know to guess this production? X =1y T,
Case 1: i, subtree Case 2: 1, subtree may be Case 3: both m; and m, may be
may start with t empty and 7, starts with t empty and the sibling may
start with t

Two sets are sufficient to capture these
cases and to build the selector table

Today’s Outline

Lecture 9 — FIRST sets

Transforming Grammars

¥YFixing LL(1) “near misses”

Building LL(1) Parsers
¥Reverse-Engineering Selector Tables
* FIRST Sets

Parsing

33

An Informal Definition

Building LL(1) Selector Table: FIRST sets, single symbol

FIRST(a) = The set of terminals that begin strings derivable
from a, and also, if a can derive g, then € is in FIRST(al).

A Formal Definition

Building LL(1) Selector Table: FIRST sets, single symbol

FIRST(a) = The set of terminals that begin strings derivable
from o, and also, if a can derive g, then € is in FIRST(X).

Formally, FIRST(a) =
{c’i (&EZAa;c’iB)V(c’f=s/\a=*>s)}

A Parse [ree Perspective

Building LL(1) Selector Table: FIRST sets, single symbol

FIRST(a) = The set of terminals that begin strings derivable
from o, and also, if a can derive g, then € is in FIRST(X).

What does the parse tree say about FIRST(A)?

S S S S S
T ' ' ' '
n|A|le A A A A

7N N\ i
b p Y e Z|G||R Z|IM|R TP
T~ L I 1
Z|d e e f f € € 8 € €
N
FIRST(A) b k FIRST(A) FIRST(A) FIRST(A)
includes Again, FIRST(A) Includes includes includes
{b} includes {f} {g} {e}
{b}

If these were the only possible parse trees, then FIRST(A)= {b, f, g, ¢ }

A Parse [ree Perspective

Building LL(1) Selector Table: FIRST sets, single symbol

FIRST(a) = The set of terminals that begin strings derivable
from o, and also, if a can derive g, then € is in FIRST(X).

This isn’t how you build FIRST sets
* Looking at parse trees is illustrative for concepts only

* We need to derive FIRST sets directly from the
grammar

Building FIRST Sets: Methodology

Building Parser Tables

First sets exist for any arbitrary string of symbols a

e Defined in terms of FIRST sets for a single symbol

* FIRST of an alphabet terminal
e FIRST for €
e FIRST for a nonterminal

e Use single-symbol FIRST to construct symbol-string FIRSTS

Rules for Single Symbols

Building Parser Tables

FIRST(X) = The set of terminals that begin strings derivable

from X, and also, if X can derive €, then € is in FIRST(X).

4 N
Building FIRST for terminals
FIRST(t) ={t}fortinX @
FIRST(e) ={ ¢ g
% (e)={¢} ,
/Building FIRST(X) for nonterminal X N
ForeachX:=a; a, .. a,
C,: add FIRST(a,) - €
C,: If € could “prefix” FIRST(a,), add FIRST(a)- €
_ C;:If eisinevery FIRST seta, ... a,, add ¢ .

39

Rules for Single Symbols

Building LL(1) Parsers

/Building FIRST(X) for nonterminal X N
ForeachX :=a, a, ... a,
C,: add FIRST(a,) - €
C,: If € could “prefix” FIRST(o,), add FIRST(a)- €
_ C;:If gisinevery FIRST seta, ... a,, add ¢ Y,

Rules for Single Symbols

Building LL(1) Parsers

/Building FIRST(X) for nonterminal X N
ForeachX :=a, a, ... a,
C,: add FIRST(a,) - €
C,: If € could “prefix” FIRST(o,), add FIRST(a)- €
_ C;:If gisinevery FIRST seta, ... a,, add ¢

/

Say there’s a production By C, clause FIRST(X) includes b, m and ¢

Xu=YZRT b,m because FIRST of every symbol before the 2" includes ¢)

Z in this case N

and we know
¢ because FIRST of every symbol before the 3@ includes &)
FIRST(Y)={¢,a}

R in this caseJ

FIRST(Z) ={&, b, m}
FIRST(X) does not add d in this clause

FIRST(R) ={c} because not every FIRST set before the T
FIRST(T) = {d } includes &

Building FIRST Sets for Symbol Strings

Building LL(1) Parsers

\

Building FIRST(a)

Let a be composed of symbols a, a, ... a,
C,: add FIRST(a,) - €
C,:Ifa, ... a, ;is nullable, add FIRST(o)- €
C;: If ay ... o, is nullable, add ¢

o /

Base Cases:

a. is is a terminal t. Add t

a; is is a nonterminal X. Add every leaf symbol that could begin an X subtree
(this gets a bit complicated due to dependencies)

Summary: Explored the LL(1) Mindset

FIRST Sets

LL(1) “Parseability” Qualification

* Knowing the leftmost terminal of a parse (sub)tree is
enough to pick the next derivation step

Elusive Conditions

* Two different rules could start with the same terminal (not
left factored)

* The same rule(s) could be applied repeatedly (left recursive)
Began choosing matching productions to input
* What terminal could the production be the start of (FIRST)?

	Slide 1: Check-in Review: Predictive Parsing
	Slide 2: Housekeeping Administrivia
	Slide 3: Housekeeping Administrivia
	Slide 4: FIRST Sets
	Slide 5: Last Time Review – Predictive Parsing
	Slide 6: Where we Left Off Review – Predictive Parsing
	Slide 7: Today’s Outline Preview – FIRST Sets
	Slide 8: LL(1) Grammar Limitations Transforming Grammars – Fixing LL(1) Near Misses
	Slide 9: Checking if a Grammar is LL(1) Transforming Grammars – Fixing LL(1) Near Misses
	Slide 10: (Immediate) Left Recursion Transforming Grammars – Fixing LL(1) Near Misses
	Slide 11: Immediate Left Recursion Removal (Predictive) Parsing - LL(1) Transformations
	Slide 12: Immediate Left Recursion Removal (Predictive) Parsing - LL(1) Transformations
	Slide 13: Immediate Left Recursion Removal (Predictive) Parsing - LL(1) Transformations
	Slide 14: Immediate Left Recursion Removal (Predictive) Parsing - LL(1) Transformations
	Slide 15: Left Factoring Grammar (Predictive) Parsing - LL(1) Transformations
	Slide 16: Left Factoring: Simple Rule (Predictive) Parsing - LL(1) Transformations
	Slide 17: Attempt LL(1) Conversion (Predictive) Parsing - LL(1) Transformations
	Slide 18: Attempt LL(1) Conversion (Predictive) Parsing - LL(1) Transformations
	Slide 19: Attempt LL(1) Conversion (Predictive) Parsing - LL(1) Transformations
	Slide 20: Current Status (Predictive) Parsing - LL(1) Transformations
	Slide 21: Let’s Check on the Parse Tree LL(1) Grammar Transformations
	Slide 22: Let’s Check on the Parse Tree LL(1) Grammar Transformations
	Slide 23: Nevermind, We’ll Fix Parse Trees Later LL(1) Grammar Transformations
	Slide 24: Today’s Outline Lecture 9 – FIRST sets
	Slide 25: Recall the LL(1) Parser’s Operation Building LL(1)Selector Table
	Slide 26: Recall the LL(1) Parser’s Operation Building LL(1)Selector Table
	Slide 27: How does the Parser Guess? Building Parser Tables
	Slide 28: Become the Parser Building Parser Tables
	Slide 29: Become the Parser Building Parser Tables
	Slide 30: Become the Parser Building Parser Tables
	Slide 31: Become the Parser Building Parser Tables
	Slide 32: Become the Parser Building Parser Tables
	Slide 33: Today’s Outline Lecture 9 – FIRST sets
	Slide 34: An Informal Definition Building LL(1) Selector Table: FIRST sets, single symbol
	Slide 35: A Formal Definition Building LL(1) Selector Table: FIRST sets, single symbol
	Slide 36: A Parse Tree Perspective Building LL(1) Selector Table: FIRST sets, single symbol
	Slide 37: A Parse Tree Perspective Building LL(1) Selector Table: FIRST sets, single symbol
	Slide 38: Building FIRST Sets: Methodology Building Parser Tables
	Slide 39: Rules for Single Symbols Building Parser Tables
	Slide 40: Rules for Single Symbols Building LL(1) Parsers
	Slide 41: Rules for Single Symbols Building LL(1) Parsers
	Slide 42: Building FIRST Sets for Symbol Strings Building LL(1) Parsers
	Slide 43: Summary: Explored the LL(1) Mindset FIRST Sets

