Assume an LL(1) parser with...

this syntax stack:

s
1
1
eof

and this (lookahead token: (

Draw the configuration of the parser after it processes the tokens ()

Housekeeping

Projects

- P1 grades are in
- P2 (nominally) due Wednesday
- P3 out Friday

Trials

- Trial 1 due tonight

Housekeeping
 Administrivia

Labs

- Based on the confusion about abstract classes, I've decided to shift the labs a bit

Intro to Parsing

- Complexity

A New Type of Language - LL(k)

- Intro
- LL(1) parsing

- What $\operatorname{LL}(1)$ languages are
- How an LL(1) parser operates

Parsing

Where we Left Off
 Review - Predictive Parsing

The language might be $\operatorname{LL}(1)$... even when the grammar is not!

	Same language	
Grammar 1	Different grammars	Grammar 2
(1) $S::=\mathbf{a b}$	1	(1) $S::=\mathrm{a} X$
(2) a c		(2) $X::=\mathbf{b}$
		(3) $X::=\mathrm{c}$

Transforming Grammars

- Fixing LL(1) "near misses"

Building LL(1) Parsers

- What the selector table needs
- FIRST Sets

Parsing

Given a language, we can't always find an LL(1) grammar even if one exists

- Best we can do: simple transformations that remove "obvious" disqualifiers

Transforming Grammars - Fixing LL(1) Near Misses

If either of the following hold, the grammar is not LL(1):

- The grammar is left-recursive
- The grammar isn't left-factored

We can transform some grammars while preserving the recognized language

(Immediate) Left Recursion

Transforming Grammars - Fixing LL(1) Near Misses

- Recall, a grammar such that $X \stackrel{+}{\Rightarrow} X \alpha$ is left recursive
- A grammar is immediately left recursive if this can happen in one step:

$$
A \rightarrow A \alpha \mid \beta
$$

Immediate Left Recursion Removal

 (Predictive) Parsing - LL(1) Transformations(for a single immediately left-recursive rule)

Arbitrary Strings (nonterminal or terminal)

$A \rightarrow \beta A^{\prime}$
$A^{\prime} \rightarrow \alpha A^{\prime}$
ε

Immediate Left Recursion Removal

 (Predictive) Parsing - LL(1) Transformations

Immediate Left Recursion Removal (Predictive) Parsing - LL(1) Transformations

Factor

Immediate Left Recursion Removal

(Predictive) Parsing - LL(1) Transformations
(general rule)

Given Productions

$$
\begin{aligned}
A::= & \beta_{1} \\
\mid & \beta_{2} \\
\mid & \beta_{n} \\
\mid & A \alpha_{1} \\
\mid & A \alpha_{2} \\
\mid & A \alpha_{m}
\end{aligned}
$$

Convert to
$\begin{aligned} A::= & \beta_{1} A^{\prime} \\ \mid & \beta_{2} A^{\prime} \\ \mid & \beta_{n} A^{\prime} \\ A^{\prime}::= & \alpha_{1} A^{\prime} \\ \mid & \alpha_{2} A^{\prime} \\ \mid & \alpha_{m} A^{\prime} \\ \mid & \varepsilon\end{aligned}$

Left Factoring Grammar

 (Predictive) Parsing - LL(1) Transformations- If a nonterminal has (at least) two productions whose RHS has a common prefix, the grammar is not left factored
(and not an LL(1) grammar)

Question: What makes this grammar not left-factored?
Exp ::=(1Exp)
| \{Exp\}
(1)
$a b$
bb

Left Factoring: Simple Rule (Predictive) Parsing - LL(1) Transformations

Given Productions

Convert to

$$
\begin{aligned}
& X::=\mathbf{a} \mathbf{b} X^{\prime} \\
& X^{\prime}::=\mathbf{c} \mathbf{d} \mid \mathbf{e f}
\end{aligned}
$$

Attempt LL(1) Conversion

 (Predictive) Parsing - LL(1) Transformations$$
\begin{aligned}
& \text { Remove immediate left-recursion } \\
& \text { Exp }::=\frac{B_{1}}{\beta_{1}}(\operatorname{Exp}) \\
& { }^{p_{2}} \text { (1) } \\
& A \rightarrow A \alpha \mid \beta \\
& \text { becomes } \\
& A \rightarrow \beta A^{\prime} \\
& A^{\prime} \rightarrow \alpha A^{\prime} \\
& \varepsilon
\end{aligned}
$$

Attempt LL(1) Conversion
(Predictive) Parsing - LL(1) Transformations

$$
\begin{aligned}
& A \rightarrow \alpha \beta_{1} \mid \alpha \beta_{2}^{\text {becomes }} \\
& A \rightarrow \alpha A^{\prime} \\
& A^{\prime} \rightarrow \beta_{1} \mid \beta_{2}
\end{aligned}
$$

Attempt LL(1) Conversion
(Predictive) Parsing - LL(1) Transformations

	Remove immediate left-recursion	Left-factored
$\begin{aligned} \text { Exp }::= & (\operatorname{Exp}) \\ & \mid \text { Exp Exp } \\ & \mid() \end{aligned}$	$\begin{aligned} & \text { Exp }::= \text { (Exp) Exp' } \\ & \mid \text { () Exp } \\ & \text { Exp }^{\prime}::=\text { Exp Exp } \\ & \mid \varepsilon \end{aligned}$	

- We've removed 2 disqualifiers from $\operatorname{LL}(1)$
- Left-recursive grammar
- Not Left-Factored grammar

Let's Check on the Parse Tree LL(1) Grammar Transformations

Let's Check on the Parse Tree LL(1) Grammar Transformations

Nevermind, We Wll Fix Parse Trees Later
-_(ツ)_/

Today's Outline
 Lecture 9 - FIRST sets

Transforming Grammars

- Fixing LL(1) "near misses"

Building LL(1) Parsers

- Understanding LL(1) Selector Tables
- FIRST Sets

Parsing

Recall the LL(1) Parser's Operation Building LL(1)Selector Table

LL(1)

- Processes Left-to-right
- Leftmost derivation
- 1 token of lookahead

Predictive Parser: "guess \& check"

- Starts at the root, guesses how to unfold a nonterminal (derivation step)
- Checks that terminals match prediction

Recall the LL(1) Parsers Operation

Building LL(1)Selector Table

How does the Parser Guess? Building Parser Tables

The intuition is a bit tricky

- We need to get into the mindset of the parser

Pretend your consciousness has been transported inside an LL(1) parser

Become the Parser
 Building Parser Tables

You need to unfold a nonterminal X with lookahead token \mathbf{t}

Assume there's an X production $X::=\pi_{1} \pi_{2}$ (where π_{1} and π_{2} are some kind of symbol)
How do we know to guess this production?

Parse in Progress

Grammar Fragment

$$
\mathrm{X}::=\pi_{1} \pi_{2}
$$

Case 1: π_{1} subtree may start with \mathbf{t}

Become the Parser
 Building Parser Tables

You need to unfold a nonterminal X with lookahead token \mathbf{t}

Assume there's an X production $X::=\pi_{1} \pi_{2}$ (where π_{1} and π_{2} are some kind of symbol)
How do we know to guess this production?

Parse in Progress

Grammar Fragment

$$
\mathrm{X}::=\pi_{1} \pi_{2}
$$

Case 1: π_{1} subtree may start with \mathbf{t}

Case 2: π_{1} subtree may be empty and π_{2} starts with \mathbf{t}

Become the Parser
 Building Parser Tables

You need to unfold a nonterminal X with lookahead token \mathbf{t}

Assume there's an X production $X::=\pi_{1} \pi_{2}$ (where π_{1} and π_{2} are some kind of symbol)
How do we know to guess this production?

Case 1: π_{1} subtree may start with \mathbf{t}

Case 2: π_{1} subtree may be empty and π_{2} starts with \mathbf{t}

Case 3 : both π_{1} and π_{2} may be empty and the sibling may start with \mathbf{t}

Become the Parser
 Building Parser Tables

Case 1: π_{1} subtree may start with t

Case 2: π_{1} subtree may be empty and π_{2} starts with \mathbf{t}

Case 3 : both π_{1} and π_{2} may be empty and the sibling may start with \mathbf{t}

Become the Parser
 Building Parser Tables

	Parse in Progress		
You need to unfold a nonterminal X		Leokahead: $\mathrm{T}_{2}(\mathbf{t})$	
with lookahead token \mathbf{t}			
Assume there's an X production $x::=\pi_{1} \pi_{2}$	Grammar Fragment	\ldots	
(where π_{1} and π_{2} are some kind of symbol)	\ldots		
How do we know to guess this production?			

Two sets are sufficient to capture these cases and to build the selector table

Transforming Grammars

"Fixing LL(1) "near misses"
Building LL(1) Parsers
Reverse-Engineering Selector Tables

- FIRST Sets

Parsing

An Informal Definition

Building LL(1) Selector Table: FIRST sets, single symbol
$\operatorname{FIRST}(\alpha)=$ The set of terminals that begin strings derivable from α, and also, if α can derive ε, then ε is in $\operatorname{FIRST}(\alpha)$.

A Formal Definition
 Building LL(1) Selector Table: FIRST sets, single symbol

$\operatorname{FIRST}(\alpha)=$ The set of terminals that begin strings derivable from α, and also, if α can derive ε, then ε is in $\operatorname{FIRST}(X)$.

Formally, $\operatorname{FIRST}(\alpha)=$

$$
\{\hat{\alpha} \mid(\hat{\alpha} \in \Sigma \wedge \alpha \stackrel{*}{\Rightarrow} \hat{\alpha} \beta) \vee(\hat{\alpha}=\varepsilon \wedge \alpha \stackrel{*}{\Rightarrow} \varepsilon)\}
$$

A Parse Tree Perspective Building LL(1) Selector Table: FIRST sets, single symbol

$\operatorname{FIRST}(\alpha)=$ The set of terminals that begin strings derivable from α, and also, if α can derive ε, then ε is in $\operatorname{FIRST}(X)$.

What does the parse tree say about $\operatorname{FIRST}(A)$?

If these were the only possible parse trees, then $\operatorname{FIRST}(A)=\{\boldsymbol{b}, \mathbf{f}, \mathbf{g}, \varepsilon\}$
$\operatorname{FIRST}(\alpha)=$ The set of terminals that begin strings derivable from α, and also, if α can derive ε, then ε is in $\operatorname{FIRST}(X)$.

This isn't how you build FIRST sets

- Looking at parse trees is illustrative for concepts only
- We need to derive FIRST sets directly from the grammar

Building FIRST Sets: Methodology Building Parser Tables

First sets exist for any arbitrary string of symbols α

- Defined in terms of FIRST sets for a single symbol
- FIRST of an alphabet terminal
- FIRST for ε
- FIRST for a nonterminal
- Use single-symbol FIRST to construct symbol-string FIRSTS

Rules for Single Symbols

Building Parser Tables

FIRST $(X)=$ The set of terminals that begin strings derivable from X, and also, if X can derive ε, then ε is in $\operatorname{FIRST}(X)$.

> Building FIRST for terminals
> FIRST $(\mathbf{t})=\{\mathbf{t}\}$ for \mathbf{t} in Σ
> $\operatorname{FIRST}(\varepsilon)=\{\varepsilon\}$

Building FIRST (X) for nonterminal X

For each X ::= $\alpha_{1} \alpha_{2} \ldots \alpha_{n}$
$\mathrm{C}_{1}: \operatorname{add} \operatorname{FIRST}\left(\alpha_{1}\right)-\varepsilon$
C_{2} : If ε could "prefix" $\operatorname{FIRST}\left(\alpha_{k}\right)$, add $\operatorname{FIRST}\left(\alpha_{k}\right)-\varepsilon$
C_{3} : If ε is in every FIRST set $\alpha_{1} \ldots \alpha_{n}$, add ε

Rules for Single Symbols

Building LL(1) Parsers

```
Building FIRST( }X\mathrm{ ) for nonterminal }
For each X ::= \alpha \alpha \alpha \alpha ... 的
    C
    \mp@subsup{C}{2}{}}\mathrm{ : If }\varepsilon\mathrm{ could "prefix" FIRST( ( }\mp@subsup{k}{k}{\prime}\mathrm{ ), add FIRST ( ( 
    C
```


Rules for Single Symbols

Building LL(1) Parsers

Building $\operatorname{FIRST}(X)$ for nonterminal X

For each $X::=\alpha_{1} \alpha_{2} \ldots \alpha_{n}$
$\mathrm{C}_{1}:$ add $\operatorname{FIRST}\left(\alpha_{1}\right)-\varepsilon$
C_{2} : If ε could "prefix" FIRST $\left(\alpha_{k}\right)$, add $\operatorname{FIRST}\left(\alpha_{k}\right)-\varepsilon$ C_{3} : If ε is in every FIRST set $\alpha_{1} \ldots \alpha_{n}$, add ε

Say there's a production

$$
X::=Y Z R T
$$

and we know

$$
\begin{aligned}
& \operatorname{FIRST}(Y)=\{\varepsilon, \mathbf{a}\} \\
& \operatorname{FIRST}(Z)=\{\varepsilon, \mathbf{b}, \mathbf{m}\} \\
& \operatorname{FIRST}(R)=\{\mathbf{c}\} \\
& \operatorname{FIRST}(T)=\{\mathbf{d}\}
\end{aligned}
$$

By C_{2} clause FIRST (X) includes \mathbf{b}, \mathbf{m} and \mathbf{c}
\mathbf{b}, \mathbf{m} because FIRST of every symbol before the $2^{\text {nd }}$ includes ε)
Z in this case \nearrow
c because FIRST of every symbol before the $3^{\text {rd }}$ includes ε)
R in this case \uparrow
$\operatorname{FIRST}(X)$ does not add \mathbf{d} in this clause
because not every FIRST set before the T includes ε

Building FIRST Sets for Symbol Strings

Building LL(1) Parsers

Building FIRST(α)

Let α be composed of symbols $\alpha_{1} \alpha_{2} \ldots \alpha_{n}$ $\mathrm{C}_{1}: \operatorname{add} \operatorname{FIRST}\left(\alpha_{1}\right)-\varepsilon$
C_{2} : If $\alpha_{1} \ldots \alpha_{k-1}$ is nullable, add $\operatorname{FIRST}\left(\alpha_{k}\right)-\varepsilon$
C_{3} : If $\alpha_{1} \ldots \alpha_{\mathrm{n}}$ is nullable, add ε

Base Cases:

α_{i} is is a terminal \mathbf{t}. Add \mathbf{t}
α_{i} is is a nonterminal X. Add every leaf symbol that could begin an X subtree (this gets a bit complicated due to dependencies)

Summary: Explored the LL(1) Mindset
 FIRST Sets

LL(1) "Parseability" Qualification

- Knowing the leftmost terminal of a parse (sub)tree is enough to pick the next derivation step

Elusive Conditions

- Two different rules could start with the same terminal (not left factored)
- The same rule(s) could be applied repeatedly (left recursive)

Began choosing matching productions to input

- What terminal could the production be the start of (FIRST)?

