J ‘ , _ \™ r

? cm crmn

a -
Syntax pirected Deginition

ASSES P : PENESD,S
l-lilm £ } /’\.? 'a.l').\)'/,‘

COMPILER

AVRLE NS AN e
AOU 00 Toun

Lexiéal
Analysis

Lecture Outline

Syntax-Directed Definition

Recall Syntactic Ambiguity

Assigning Meaning to (Parse) Trees

* Tree translation intuition

* Introduce Syntax-Directed Definition
Tools for SDD

* Bison

Syntax-Directed
Definition

Last Time

Review Lecture 4 —Syntactic Ambiguity

Recognizing Context-Free Grammars
* The parser wants a parse tree
Some Challenges in Syntactic Analysis

 Ambiguous Syntax
* Precedence
* Associativity

Syntactic
Definition

Last Time

Review Lecture 4 —Syntactic Ambiguity

Force precedence Force associativity
constraints constraints

/ ™\ / ™\

E:= EminusE E:= EminusE E:= EminusT
E:=EtimesE | T | T
E:=EpowtE T:= TtimesT T:= TtimesF
| F | F
F:= Fpow F F:= G pow F
| G | G
G := intlit G :=intlit

Syntactic
Definition

Ensure Bad Exprs are Invalid Syntax

Working with Parse Trees

E

E /I\
E:= Eminus T

/[\ T E Mminus T
T:= TtimesF |

E minus E | F T F
| F:= GpowF l

| | 3 G = intlit /I\ |

intlit intlit G pow F intlit
1 2 | \ 2
intlit CI;
1 intlit

1

Lecture Outline

Preview Lecture 5 — Syntax-Directed Translation

Recall Syntactic Ambiguity

Assigning Meaning to (Parse) Trees

* Tree translation intuition

* Introduce Syntax-Directed Definition
Tools for SDD

* Bison

Syntax-Directed
Definition

Benefits of Parse Trees

Assigning Meaning to Parse Trees

All of the known methods for defining the meaning of computer programs were
based on rather intricate algorithms having roughly the same degree of complexity as
compilers, or worse. This was in stark contrast to Chomsky’s simple and elegant method
of syntax definition via context-free grammars. As Dr. Caracciolo said, “How simple to
realize [semantic correctness] if you write a procedure. The problem is, however, to find
a metalanguage for doing that in a declarative way, not in an operational way” [3].

Benefits of Parse Trees

Assigning Meaning to Parse Trees

* Impose structure on tokens
* Easy to specify
* /Easy'to process

\ good algorithms

are known

More generally:
Trees are great data structures
for nesting relationships

Two Ways of Thinking About Trees

Working with Trees
Compilers
As a type of graph {Ufse insbig;tf} As a type of nesting
rom po
views
Root is a node, children are successors Root is a tree, children are inside
Work “root-down” vs “leaves-up” Work “outside in” vs “inside out”

Two Ways of Thinking About Trees

Working with Trees

As a type of nesting

oot is a tree, children are inside

ork “outside in” vs “inside out”

Same but subtrees depicted as triangles

/

\

ITrees as a Nesting

Working with Trees

ITrees as a Nesting

Working with Trees

also 10, 11]. If we know the meaning of o and the meaning of 3, then we know the
meanings of such things as a+ 3, a — 8, a X 3, /B, and (a). Thus the meaning of an
arbitrarily large expression can be synthesized in a straightforward way by recursively
building up the meanings of its subexpressions.

Assigning Meani ing fo Subtrees

Processing Parse Trees

Goal:
Assign a translation for Translation is
each node / subtree the value of

the expression

E trans =
subtree 1 _ Subtree 3

translation translation

E trans = K, E 3

subtree >

translation /
E dash T /\
4
/\ . ||- T trans = Grammar:
T Intlit subtree E:=EdashT
T trans = _
4 1 literal value | T
subtree | T
literal value| intlit T ::=intlit

4 Input Expression: 4 -1 14

Assigning Meani ing fo Subtrees

Processing Parse Trees
s Goal:
rans = ..
: : Translation is
Assign a translation for subtree T _ subtree 3

the value of
the expression

each node / subtree translation translation

T trans =
subtree
literal value

7/ intlit
E) dash (T 2
4 | .
. uye rammar:
T intlit E::=EdashT
| 4 1 | T
intlit T ::=intlit

4 Input Expression: 4 -1 -2 .

Assigning Meani ing fo Subtrees

Assign a translation for
each node / subtree

Processing Parse Trees

Goal:

E trans = Translation is

subtree 7 ~ subtree 3
translation translation

the value of
the expression

E trans =
subtree 7 _ subtree 3 /
translation translation 7~ |T trans =
2 subtree
K, literal value
E trans = E 3
subtree . | .
translation / intlit
E . dash T /\ 2
/\ inil:lit T trans = Grammar:
T trans = T subtree E:=EdashT
4 1 literal value | T
subtree | T
literal value| intlit T ::=intlit

4 Input Expression: 4 -1 -2

16

In Summary

Processing Parse Trees

* Translation depends on the goal

Goal: Goal:
Translation is Translation is

the value of the number of
the expression operands

17

Assigning Meani ing fo Subtrees

Processing Parse Trees

Goal:

E trans = Translation is
subtree T subtree 3 7

translation translation

E trans =
subtree 7 . subtree 3 + 7
translation translation

the number of
operators

r T trans = O

_ 0
E trans = E 7
subtree . | .
translation 0 intlit
E dash T /\)
Y |
. aue Tt =0 .
/‘\ T |nt||t rans (EET?_mErr;arhT
T trans = O O 1 T as
| T
intlit T ::=intlit
4

Input Expression: 4 —1-2

18

Tree Translation Intuition: Summary

Processing Parse Trees

* Translation depends on the goal
* Translation is selected based on the production
e Conceptually, a post-pass over the complete parse tree

(52) E dash T
I | Grammar:
T intlit @ E:=EdashT
| 1 @ -
intlit @ T ::=intlit

19

Lecture Outline

Preview Lecture 5 — Syntax-Directed Translation

Recall Syntactic Ambiguity

Assigning Meaning to (Parse) Trees

* Tree translation intuition

* Introduce Syntax-Directed Definition
Tools for SDD

* Bison

Syntax-Directed
Definition

20

Syntax-Directed Definitions

Processing Parse Trees

Semantics of Context-Free Languages

by

DonNALD E. KNUTH
California Institute of Technology

ABSTRACT

“Meaning” may be assigned to a string in a context-free language by defining “at-
tributes” of the symbols in a derivation tree for that string. The attributes can be de-
fined by functions associated with each production in the grammar. This paper

21

Syntax-Directed Definitions

Processing Parse Trees

e Attach translation rules per-production

Xi=ay..q, { LHS.trans = <translation of X that can use translations of a; ... a,> }

| By ...B, {LHS.trans = <translation of X that can use translations of B, ... B> }

Y=Y ..Y, {LHS.trans = <translation of Y that can use translations of y, ...y,> }

Goal:
Translation is

the value of
the expression

Grammar: Arithmetic Rules:
@ E::=Edash T {LHS.trans = E.trans—Ttrans }
@ | T { LHS.trans = T.trans }

@ T :=intlit { LHS.trans = intlit.value } -

SDD: Example

Processing Parse Trees

@ | rule
rule
/\ E trans =
E trans = b 3 7 subtree 7 B SUbtree 3
subtree 1 _ suptr ee translation translation
translation translation
2 @rule
dash —W trans =
@rule | subtree
- 7 @rule intlit literal value
rans = E T trans =
subtree 7 r;l ° 2
translation subtree
T intlit literal value
@rule / | & 1
T trans = intlit . .
subtree Grammar: Arithmetic Rules:

literal value| 4

@ E::= Edash T {LHS.trans = E.trans — T.trans }

@
@T .= intlit

{ LHS.trans = T.trans }

{ LHS.trans = intlit.value }

Lecture Outline

Syntax-Directed Definition

Working with Parse Trees
* Benefits of Parse Trees / Trees in general
* Tree translation intuition

* Syntax-Directed Definition
- Finer points

Tools for SDD
* Bison

Syntax-Directed
Definition

24

SDD: Parse Tree Processing Multitool

Processing Parse Trees

SDD is a flexible tool for
assigning meaning to
parse trees

e Useful beyond
compilers

* We won’t even use the
full power of the
technique

25

SDD: A Different Translation Scheme

Processing Parse Trees

e SDD can do more than evaluate expressions

Goal:
Translate arithmetic

expression to its
number of operators

Grammar: Operator Count Rules:
@ E::=EdashT { LHS.trans = E.trans + T.trans + 1}
8 | T { LHS.trans = T.trans }
T = intlit { LHS.trans =0}

@ T =:=Tmultintlit {LHS.trans=T.trans+1}

26

SDD: A Different Translation Scheme

Processing Parse Trees

2
/} @rule

7
E 0 dash T @rule
@rule
0 O/ 1 ~
T O mult intlit
@rule . . 2
. intlit
intlit 1
1
Grammar: Operator Count Rules:
@ E:=EdashT { LHS.trans = E.trans + T.trans + 1}
8 | T { LHS.trans = T.trans }
T ::=intlit { LHS.trans =0}

@ T =:=Tmultintlit {LHS.trans=T.trans+1}

SDD: Yet Another Translation

Processing Parse Trees

* Myth: SDD translations are always int values

Goal:
Translate arithmetic

expression to a list
of its int literals

Grammar: List of integers Rules:
@ E:=EdashT { LHS.trans = E.trans.extend(T.trans) }
8 | T { LHS.trans = T.trans }
= intlit { LHS.trans = [intlit.value] }

@ T ::=Tmultintlit {LHS.trans = T.trans.extend([intlit.value]) }

28

SDD: Yet Another Translation

Processing Parse Trees

e
[2,3]

E [7] dash I O

T [1] O | mult intlit
© intlit 3

intlit 2
1
Grammar:
@ E:=EdashT { LHS.trans = E.trans.extend(T.trans) }
8 | T { LHS.trans = T.trans }
T ::=intlit { LHS.trans = [intlit.value] }

@ T ::=Tmultintlit {LHS.trans = T.trans.extend([intlit.value]) }

29

SDD: mary Numbers

Processing Parse Trees

CFG Rules Goal:
P1: B ::= LHS.trans = ??7? Translation is
P2: |1 [LHS.trans="7???
P3: | BO LHS.trans="7???
P4: | B1 LHS.trans="7???

the value of
the input

Example:
Input string 10110

should be 22

30

SDD: mary Numbers

Processing Parse Trees

CFG Rules Goal:
P1:B:=0 LHS.trans =0 Transiation IS
P2: |1 [LHStrans=1
P3: | BO LHS.trans=B,.trans * 2
P4: | B1 LHStrans=B trans*2+1

the value of
the input

22 g Example:
PN Input string 10110
T B 0 should be 22
N
5B 1
PN
2 5 1
PN
! 0

B
|
1

31

SDD: Int Declaration List

Processing Parse Trees

CFG Rules
DList = € LHS.trans = “”
| DlList Decl LHS.trans = Decl.trans + “ “ + DList,.trans
Decl ::= Typeid; if (Type.trans) {LHS.trans = id.value} else {Decl.trans = “”}
Type = int LHS.trans = true
| bool LHS.trans = false
_ “xx | DList
Input string
int xx;
bool yy; “xx " | DList “"1 Decl
‘o false Type id
. “” 1 DList XX | Decl
Translation is a | /
String of int ids true | Type i bool

only €

int

32

BISON: A tool for SDD

%union {
int intval
}

%token zero
%#token one

%type <intval> B

: B { print
: zero { $%
| one { %%
| B zero { %%
| B one { $%

Assigning Meaning to Parse Trees

2

f("value is %d\n", $1); }
e; }

1; }

$1 * 2 +0; }

$1 2+ 1; }

33

Next Time

Lecture Preview

Discuss a use of SDD of particular use to Compilers:

* Translating the parse tree into an Abstract Syntax
Tree

