
Check-In
Review: Compiler Overview

What is an example of an input to a C compiler that would cause a lexical analysis error?

What is an example of an input to a C compiler that would cause a syntactic analysis
error?

1

Administriva
Housekeeping

Project 1

• Out tonight

• Add Flex rules for our language

• Might want to find a project partner!

2

Administriva
Housekeeping

What should we call our language?

3

Surveys (Mostly) Processed
Housekeeping

- We will do flipped Wednesdays

- I’ll try to put out some 510 review

4

2 – Implementing Scanners

KU | EECS 665 | Drew Davidson

5

Compiler Construction
Progress Pics

Currently working on lexical
analysis concepts

• Convert the character stream
from the user into the token
stream (the “words” of the
programming language)

6

Scanner
Lexical analysis

Parser
Syntactic analysis

Semantic analysis

Intermediate code
generation

IR optimization

Final Code
generation

Final code
optimization

Last Time
Review: Overview

Introduced a definition of a
compiler and its workflow

7

In lab we showed a tool that
automatically does this
translation (Flex)

Used RegExs to specify
languages of tokens

Claimed RegExs can be automatically
translated to recognize languages

Token
Integer Literal

RegEx
0|(1|2|…|9)(0|1|…|9)*

RegEx
“+”

DFA

S AE
+

You Should Know

• The phases of the compiler and what each step does
• What errors the various phases catch
• How to specify a token’s lexemes with a regex

RegEx

Lecture Overview
Lecture 2 – Implementing Scanners

8

DFA

Rabin-Scott

Powerset

Construction

𝜀-NFA
𝜀-free
NFA

Thompson’s

Construction

Algorithm

𝜺-elimination

Walk through the translation process formally

Key Concept
Thompson’s Construction Algorithm

Use an expression tree:
• Leaf: atomic operand

• Branch: operations joining subtrees

9

1 +2 × 3 + 4

1

+

+

×

2 3

4

low precedence
operators shallow

in the tree
NOTE:

high precedence
operators deep

in the tree

Expression Tree Examples

Arithmetic Expression

Arithmetic Expression Tree

a|b*

a

|

*

b

RegEx

Expression Tree

Thompson’s Construction Intuition
Thompson’s Construction Algorithm

Two-Step Process:

• Break the RegEx down to the simplest units with
“obvious” FSMs (i.e. expression tree leaves)

• Combine the sub-FSMs according to operator rules
(i.e. expression tree branch rules)

10Recombobulate the Regex into an FSM piecewise

Thompson’s Construction Alg.
Build the RegEx Tree | Replace nodes bottom-up

11

Op Precedence

* High

concat Medium

| Low

d b

|

|

c
d|b

(a|𝜀)(c|d|b)*

concat

a | 𝜀
(c|d|b)*

c|d|b
*|

a 𝜀

Apply rules bottom up:
- convert leaf nodes (RegEx operands) to DFAs
- combine branch nodes (RegEx operators) per operator

Thompson’s Construction Alg.
Build the RegEx Tree | Replace nodes bottom-up

12

Op Precedence

* High

concat Medium

| Low

d b

|

|

c
d|b

(a|𝜀)(c|d|b)*

concat

a | 𝜀
(c|d|b)*

c|d|b
*|

a 𝜀SA AA
a

SE AE
𝜀

SC AC
c

SD AD
d

SB AB
b

Apply rules bottom up:
- convert leaf nodes (RegEx operands) to DFAs
- combine branch nodes (RegEx operators) per operator

SA AA
a

L

|

|
d|b

concat

a | 𝜀
(c|d|b)*

c|d|b
*|

SC AC
c

SD AD
d

SB AB
b

Thompson’s Construction Alg.
Build the RegEx Tree | Replace nodes bottom-up

13

SE AE
𝜀

Alternation:
- New start state with
𝜀-trans to old starts

- New final state with
𝜀-trans from old
finals

SA

a

SE

𝜀
S

𝜀

𝜀

A

E 𝜀

𝜀

(a|𝜀)(c|d|b)*

|

|
d|b

concat

a | 𝜀
(c|d|b)*

c|d|b
*

SC AC
c

SD AD
d

SB AB
b

Thompson’s Construction Alg.
Build the RegEx Tree | Replace nodes bottom-up

14

Alternation:
- New start state with
𝜀-trans to old starts

- New final state with
𝜀-trans from old
finals

SA

a

SE

𝜀
S

𝜀

𝜀

A

E

L

𝜀

𝜀

(a|𝜀)(c|d|b)*

|
d|b

concat

a | 𝜀
(c|d|b)*

c|d|b
*

SC AC
c

Thompson’s Construction Alg.
Build the RegEx Tree | Replace nodes bottom-up

15

Alternation:
- New start state with
𝜀-trans to old starts

- New final state with
𝜀-trans from old
finals

SA

a

SE

𝜀
S

𝜀

𝜀

A

E

L

𝜀

𝜀

SD

d

SB

b
S

𝜀

𝜀

D

B

AM

𝜀

𝜀

(a|𝜀)(c|d|b)*

|
d|b

concat

a | 𝜀
(c|d|b)*

c|d|b
*

SC AC
c

Thompson’s Construction Alg.
Build the RegEx Tree | Replace nodes bottom-up

16

Alternation:
- New start state with
𝜀-trans to old starts

- New final state with
𝜀-trans from old
finals

SA

a

SE

𝜀
S

𝜀

𝜀

A

E

L

𝜀

𝜀

SD

d

SB

b
S

𝜀

𝜀

D

B

AM

𝜀

𝜀

SC C
c

SA

d

SE

b
SM

𝜀

𝜀

A

E

M

𝜀

𝜀S

𝜀

𝜀

𝜀

AN

(a|𝜀)(c|d|b)*

concat

a | 𝜀
(c|d|b)*

*

Thompson’s Construction Alg.
Build the RegEx Tree | Replace nodes bottom-up

17

Alternation:
- New start state with
𝜀-trans to old starts

- New final state with
𝜀-trans from old
finals

SA

a

SE

𝜀
S

𝜀

𝜀

A

E

L

𝜀

𝜀

SC C
c

SA

d

SE

b
SM

𝜀

𝜀

A

E

M

𝜀

𝜀S

𝜀

𝜀

𝜀

AN

(a|𝜀)(c|d|b)*

concat

a | 𝜀
(c|d|b)*

*

Thompson’s Construction Alg.
Build the RegEx Tree | Replace nodes bottom-up

18

SA

a

SE

𝜀
S

𝜀

𝜀

A

E

L

𝜀

𝜀

SC C
c

SA

d

SE

b
SM

𝜀

𝜀

A

E

M

𝜀

𝜀S

𝜀

𝜀

𝜀

AN

Repetition (* operator):
- New start state with
𝜀-edge to old start
- New final state with
𝜀-edge from new start
- 𝜀-edge from final to
start

(a|𝜀)(c|d|b)*

(a|𝜀)(c|d|b)*

c|d|b

Thompson’s Construction Alg.
Build the RegEx Tree | Replace nodes bottom-up

19

a | 𝜀

*
a

SA

SE

𝜀
S

𝜀

𝜀

A

E

AL

𝜀

𝜀

SC C
c

SD

d

SB

b
SM

𝜀

𝜀

D

B

M

𝜀

𝜀S

𝜀

𝜀

𝜀
AN

SC C
c

SA

d

SE

b
SM

𝜀

𝜀

A

E

M

𝜀

𝜀

𝜀
N

S SN

𝜀

AO

𝜀

𝜀

𝜀

(c|d|b)*

Repetition (* operator):
- New start state with
𝜀-edge to old start
- New final state with
𝜀-edge from new start
- 𝜀-edge from final to
start

concat

Thompson’s Construction Alg.
Build the RegEx Tree | Replace nodes bottom-up

20

a | 𝜀

(a|𝜀)(c|d|b)*

a
SA

SE

𝜀
S

𝜀

𝜀

A

E

AL

𝜀

𝜀

(c|d|b)*

SC C
c

SD

d

SB

b
SM

𝜀

𝜀

D

B

M

𝜀

𝜀

𝜀
N

S SC

𝜀

AO

𝜀

𝜀

𝜀

Repetition (* operator):
- New start state with
𝜀-edge to old start
- New final state with
𝜀-edge from new start
- 𝜀-edge from final to
start

concat

Thompson’s Construction Alg.
Build the RegEx Tree | Replace nodes bottom-up

21

a | 𝜀
(c|d|b)*

(a|𝜀)(c|d|b)*

Concatenation:
- Add 𝜀-edge from first FSM’s final state to

second FSM’s start state
- Remove final status from first FSM

a
SA

SE

𝜀
S

𝜀

𝜀

A

E

AL

𝜀

𝜀 SC C
c

SD

d

SB

b
SM

𝜀

𝜀

D

B

M

𝜀

𝜀

𝜀
N

S SC

𝜀

AO

𝜀

𝜀

𝜀

concat

Thompson’s Construction Alg.
Build the RegEx Tree | Replace nodes bottom-up

22

a | 𝜀
(c|d|b)*

(a|𝜀)(c|d|b)*

a
SA

SE

𝜀
S

𝜀

𝜀

A

E

L

𝜀

𝜀 SC C
c

SD

d

SB

b
SM

𝜀

𝜀

D

B

M

𝜀

𝜀

𝜀
N

SO SC

𝜀

AO

𝜀

𝜀

𝜀
𝜀

Concatenation:
- Add 𝜀-edge from first FSM’s final state to

second FSM’s start state
- Remove final status from first FSM concat

Thompson’s Construction Alg.
Build the RegEx Tree | Replace nodes bottom-up

23

(a|𝜀)(c|d|b)*

a
SA

SE

𝜀
S

𝜀

𝜀

A

E

L

𝜀

𝜀
SC C

c

SD

d

SB

b
SM

𝜀

𝜀

D

B

M

𝜀

𝜀

𝜀
N

SO SC

𝜀

AO

𝜀

𝜀

𝜀

𝜀

Thompson’s Construction: Side-Note
Build the RegEx Tree | Replace nodes bottom-up

The FSMs produced by
Thompsons Construction
are a little bit messy!

• Clearly less efficient than
what we would do by hand

• Designed for ease of proofs

• In practice, it’s easy to
minimize FSMs later

24

RegEx DFA

Rabin-Scott

Powerset

Construction

𝜀-NFA
𝜀-free
NFA

Thompson’s

Construction

Algorithm

𝜺-elimination

From RegEx to DFA
Lecture 2 – Implementing Scanners

25

Observation: You never see an epsilon in the input
• Consuming a character means taking a “chain” of zero-or-more
𝜀-edges then a real character edge

Algorithm Intuition: cut out the middleman
• Replace all “chains” with a direct real-character edge

26

b

Eliminating 𝜀-transitions
Lecture 2 – Implementing Scanners

S

1

2

S3

𝜀

𝜀

a b

S

2

3

S4

a

a

Input: a

𝜀

𝜀

a

• Compute 𝜀-close(s), the set of states reachable via 0 or
more 𝜀-edges from s

• Copy all states from N to an 𝜀-free version, N’

• Put s in F’ if 𝜀-close(s) contains a state in F

• Put s,c → t in 𝛿’ if there is a c-edge to t in 𝜀-close(s)

27

Eliminating 𝜀-transitions
Lecture 2 – Implementing Scanners

S

2

C

4

5

3

6

1

x

x

𝜀

𝜀

x

x

𝜀

28

x

Example, Step I
Eliminating 𝜀-Transitions

𝜀-close(S) = {S,1,3,6}

𝜀-close(3) = {3, 6}

𝜀-close(1) = {1}

𝜀-close(2) = {2}

𝜀-close(4) = {4}

𝜀-close(5) = {5}

𝜀-close(6) = {6}

Let 𝜀-close(s) be the set of states reachable via 0 or more 𝜀-edges

S

2

C

4

5

3

6

1

x

x

𝜀

𝜀

x

x

𝜀

29

x

Example, Step II
Eliminating 𝜀-Transitions

𝜀-close(S) = {S,1,3,6}

𝜀-close(3) = {3, 6}

𝜀-close(1) = {1}

𝜀-close(2) = {2}

𝜀-close(4) = {4}

𝜀-close(5) = {5}

𝜀-close(6) = {6}

Copy all states from N to N’

S

2

C

4

5

3

6

1

S

2

C

4

5

3

6

1

x

x

𝜀

𝜀

x

x

𝜀

30

x

Example, Step III
Eliminating 𝜀-Transitions

𝜀-close(S) = {S,1,3,6}

𝜀-close(3) = {3, 6}

𝜀-close(1) = {1}

𝜀-close(2) = {2}

𝜀-close(4) = {4}

𝜀-close(5) = {5}

𝜀-close(6) = {6}

S

2

C

4

5

3

6

1

Put s in F’ if 𝜀-close(s) contains a state in F

S

S

2

C

4

5

3

6

1

x

x

𝜀

𝜀

x

x

𝜀

31

x

Example, Step IV
Eliminating 𝜀-Transitions

𝜀-close(S) = {S,1,3,6}

𝜀-close(3) = {3, 6}

𝜀-close(1) = {1}

𝜀-close(2) = {2}

𝜀-close(4) = {4}

𝜀-close(5) = {5}

𝜀-close(6) = {6}

S

2

C

4

5

3

6

1

S

Put s,c → t in 𝛿’ if there is a c-edge to t in 𝜀-close(s)

x

𝜀

x

S

2

C

4

5

3

6

1

x

x

𝜀

𝜀

x

x

𝜀

32

x

Example, Step IV
Eliminating 𝜀-Transitions

𝜀-close(S) = {S,1,3,6}

𝜀-close(3) = {3, 6}

𝜀-close(1) = {1}

𝜀-close(2) = {2}

𝜀-close(4) = {4}

𝜀-close(5) = {5}

𝜀-close(6) = {6}

S

2

C

4

5

3

6

1

S

Put s,c → t in 𝛿’ if there is a c-edge to t in 𝜀-close(s)

x

x

𝜀

x

S

2

C

4

5

3

6

1

x

x

𝜀

𝜀

x

x

𝜀

33

x

Example, Step IV
Eliminating 𝜀-Transitions

𝜀-close(S) = {S,1,3,6}

𝜀-close(3) = {3, 6}

𝜀-close(1) = {1}

𝜀-close(2) = {2}

𝜀-close(4) = {4}

𝜀-close(5) = {5}

𝜀-close(6) = {6}

S

2

C

4

5

3

6

1

S

Put s,c → t in 𝛿’ if there is a c-edge to t in 𝜀-close(s)

x

x

No edges out of 6!

S

2

C

4

5

3

6

1

x

x

𝜀

𝜀

x

x

𝜀

34

x

Example, Step IV
Eliminating 𝜀-Transitions

𝜀-close(S) = {S,1,3,6}

𝜀-close(3) = {3, 6}

𝜀-close(1) = {1}

𝜀-close(2) = {2}

𝜀-close(4) = {4}

𝜀-close(5) = {5}

𝜀-close(6) = {6}

S

2

C

4

5

3

6

1

S

Put s,c → t in 𝛿’ if there is a c-edge to t in 𝜀-close(s)

x

x

Note: this definition necessarily preserves all original non-𝜀 edges

x

x

x

x

x

S

2

C

4

5

3

6

1

x

x

𝜀

𝜀

x

x

𝜀

35

x

Example, Done!
Eliminating 𝜀-Transitions

S

2

C

4

5

3

6

1

S

x

x

x

x

x

x

x=

Can also remove unreachable “useless” state

S

2

C

4

5

3

6

1

x

x

𝜀

𝜀

x

x

𝜀 S

2

C

4

5

3

6

1

x

x

x

x

Put s,c → t in 𝛿’ if there is a c-edge to t in 𝜀-close(s)

S

x
x

x

36

𝜀-close(S) = {S,1,3,6}

x

Example, Step IV
Eliminating 𝜀-Transitions

RegEx DFA

Rabin-Scott

Powerset

Construction

𝜀-NFA
𝜀-free
NFA

Thompson’s

Construction

Algorithm

𝜺-elimination

37

From RegEx to DFA
Lecture 2 – Implementing Scanners

40

Recall: NFA Matching Procedure
Rabin-Scott Powerset construction

• NFA can “choose” which
transition to take
oAlways moves to states

that leads to acceptance
(if possible)

• Simulate set of states
the NFA could be in
• If any state in the ending

set is final, string
accepted

38

S,x = {S,A}

S,y = {S}

A,x = {R}

A,y = {R}

R,x = {D}

R,y = {D}

D,x = {}

D,y = {}

A D

x,y

x,yx
DR

x,y
S

Successor

set of

states

Input String x x y

S

1 2 3position

S

A

S
A

R

S

R

D

x

D

S
A

NFA

possible
states

S,x = {S,A}

S,y = {S}

A,x = {R}

A,y = {R}

R,x = {D}

R,y = {D}

D,x = {}

D,y = {}

{S} {S,A} D
{S,A,
R,D}

{S,A,
R}

{S,
D}

{S,R} D
{S,R,
D}

{S,A
,D}

{S,D}
{S,A,

D}

39

x

y

{A} {R}
{S,
D}

{R,D}{D}
{S,D

}
{A,D}

{A,R}

{S,D
}

{A,R,
D}

x,y x,y

From Successors to Powerset DFA
Rabin-Scott Powerset Construction

S,x = {S,A}

S,y = {S}

A,x = {R}

A,y = {R}

R,x = {D}

R,y = {D}

D,x = {}

D,y = {}

{S} {S,A} D
{S,A,
R,D}

{S,A,
R}

{S,
D}

{S,R} D
{S,R,
D}

{S,A
,D}

{S,D}
{S,A,

D}

40

{S,A}, x = S,x U A,x

= {S,A} U {R}

= {S,A,R}

x

y

{A} {R}
{S,
D}

{R,D}{D}
{S,D

}
{A,D}

{A,R}

{S,D
}

{A,R,
D}

x,y x,y

x

From Successors to Powerset DFA
Rabin-Scott Powerset Construction

S,x = {S,A}

S,y = {S}

A,x = {R}

A,y = {R}

R,x = {D}

R,y = {D}

D,x = {}

D,y = {}

{S} {S,A} D
{S,A,
R,D}

{S,A,
R}

{S,
D}

{S,R} D
{S,R,
D}

{S,A
,D}

{S,D}
{S,A,

D}

41

{S,A}, y = S,y U A,y

= {S} U {R}

= {S,R}

x

y

{A} {R}
{S,
D}

{R,D}{D}
{S,D

}
{A,D}

{S,D
}

{A,R,
D}

x,y x,y

x

y

x

From Successors to Powerset DFA
Rabin-Scott Powerset Construction

{A,R}

S,x = {S,A}

S,y = {S}

A,x = {R}

A,y = {R}

R,x = {D}

R,y = {D}

D,x = {}

D,y = {}

{S} {S,A} D
{S,A,
R,D}

{S,A,
R}

{S,
D}

{S,R} D
{S,R,
D}

{S,A
,D}

{S,D}
{S,A,

D}

42

x

y

{A} {R}
{S,
D}

{R,D}{D}
{S,D

}
{A,D}

{A,R}

{S,D
}

{A,R,
D}

x,y x,y

x

y

x

x

x

x

y
x

y

x y

y

From Successors to Powerset DFA
Rabin-Scott Powerset Construction

• How may states might the DFA have?
• 2|Q|

• Why 2|Q|?

43

S A D

x,y

x,yx
D

S A D

0 0 0 {}

0 0 1 {D}

0 1 0 {A}

1 0 0 {S}

0 1 1 {A,D}

1 1 0 {S,A}

1 0 1 {S,D}

1 1 1 {S,A,D}

Exponential State Count
Rabin-Scott Powerset Construction

RegEx DFA

Rabin-Scott

Powerset

Construction

𝜀-NFA
𝜀-free
NFA

Thompson’s

Construction

Algorithm

𝜺-elimination

44

DONE!
… or are we?

From RegEx to DFA
Lecture 2 – Implementing Scanners

• Finite automata only check
for language membership
of a string (recognition)

• The Scanner needs to
• Break the input into many

different tokens

• Know what characters
comprise the token

45

DFA

int a; b = 3 + 2;

input string

recognition

or

DFA ≠ Tokenizer
Limitations

• Finite automata only check
for language membership
of a string (recognition)

• The Scanner needs to
• Break the input into many

different tokens

• Know what characters
comprise the token

We need to go… beyond
recognition

46

DFA

int a; b = 3 + 2;

input string

recognition

or

DFA ≠ Tokenizer
Limitations

47

Scanner
Lexical analysis

Parser
Syntactic analysis

Semantic analysis

Intermediate code
generation

IR optimization

Final Code
generation

Final code
optimization

Output code in T

Source code in S
(sequence of chars)

Lexical Definition Lexical Recognition Tokenization

Syntactic Definition Syntactic Recognition Parsing

Next Time
Lecture 3 Preview

	Slide 1: Check-In Review: Compiler Overview
	Slide 2: Administriva Housekeeping
	Slide 3: Administriva Housekeeping
	Slide 4: Surveys (Mostly) Processed Housekeeping
	Slide 5: 2 – Implementing Scanners
	Slide 6: Compiler Construction Progress Pics
	Slide 7: Last Time Review: Overview
	Slide 8: Lecture Overview Lecture 2 – Implementing Scanners
	Slide 9: Key Concept Thompson’s Construction Algorithm
	Slide 10: Thompson’s Construction Intuition Thompson’s Construction Algorithm
	Slide 11: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 12: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 13: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 14: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 15: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 16: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 17: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 18: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 19: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 20: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 21: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 22: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 23: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 24: Thompson’s Construction: Side-Note Build the RegEx Tree | Replace nodes bottom-up
	Slide 25: From RegEx to DFA Lecture 2 – Implementing Scanners
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Recall: NFA Matching Procedure Rabin-Scott Powerset construction
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

