Check-In

Review: Compiler Overview

What is an example of an input to a C compiler that would cause a lexical analysis error?

What is an example of an input to a C compiler that would cause a syntactic analysis
error?

Administriva

Housekeeping

Project 1

e Out tonight

* Add Flex rules for our language

* Might want to find a project partner!

Administriva

Housekeeping

What should we call our language?

Surveys (Mostly) Processed

Housekeeping

- We will do flipped Wednesdays
- I'll try to put out some 510 review

" KU |'EECS 665 | Drew Davidson

MM l v H"’ l !ﬁr-— -—

CONSTRUCTION

/= \mp,\(ementmg Scarmers
s

Compiler Construction

Progress Pics

Currently working on lexical
analysis concepts

e Convert the character stream
from the user into the token
stream (the “words” of the
programming language)

UNDER

CONSTRUCTION

[

Scanner
Lexical analysis

J

\ 4

|

Parser

Syntactic analysis

\ 4

Semantic analysis

A 4

4))
Intermediate code

generation

\ 4

IR optimization

A

y
Final Code
generation

Y

-

Final code
optimization

J

Last Time

Review: Overview

/Introduced a definition of a \ / Used RegExs to specify \

compiler and its workflow Claimed RegExs can be automatically

languages of tokens translated to recognize languages

Scanner
Lexical analysis
Pa;;er _g_Re Ex
Syntactic analysis Token “yr
Semantic analysis Integer Literal
" Intermediate code
generation RegEx DFA
0[(1/2]...|9)(0]1]...|9)* N
IR optimization
T foek You Should Know
generation
Final code * The phases of the compiler and what each step does
optimization .
K * What errors the various phases catch /
* How to specify a token’s lexemes with a regex ,

Lecture Overview

Lecture 2 — Implementing Scanners

Walk through the translation process formally

e-free
RegEx E-NFA NFA DFA
Thompson’s e-elimination Rabin-5cott

Construction
Algorithm

Powerset
Construction

Key Concept

Thompson’s Construction Algorithm

Use an expression tree:
 Leaf: atomic operand
* Branch: operations joining subtrees

Expression Tree Examples

Arithmetic Expression RegEx
1+2Xx3+4 alb*
Arithmetic Expression Tree Expression Tree
+ I
L low precedence ——
1 + operators shallow a
T in the tree
X 4 NOTE: b
AN high precedence
2 3 operators deep

in the tree

Thompson’s Construction Intuition

Thompson’s Construction Algorithm

Two-Step Process:

* Break the RegEx down to the simplest units with
“obvious” FSMs (i.e. expression tree leaves)

* Combine the sub-FSMs according to operator rules
(i.e. expression tree branch rules)

Recombobulate the Regex into an FSM piecewise

10

Thompson’s Construction Alg.

Build the RegEx Tree| | Replace nodes bottom-up

m Precedence

¥ High concat
concat Medium
| Low
/\ |

Apply rules bottom up: P

- convert leaf nodes (RegEx operands) to DFAs
- combine branch nodes (RegEx operators) per operator

11

Thompson’s Construction Alg.

Build the RegEx Tree | Replace nodes bottom-up

m Precedence

* High concat

concat Medium
| Low

/\

(0@

T

Apply rules bottom up:

- convert leaf nodes (RegEx operands) to DFAs

- combine branch nodes (RegEx operators) per operator

12

Thompson’s Construction Alg.

Build the RegEx Tree | Replace nodes bottom-up

Alternation:
New start state with concat

e-trans to old starts
- New final state with
e-trans from old

finals

Thompson’s Construction Alg.

Build the RegEx Tree | Replace nodes bottom-up

Alternation:
New start state with concat

e-trans to old starts
- New final state with
e-trans from old

finals

Thompson’s Construction Alg.

Build the RegEx Tree | Replace nodes bottom-up

Alternation:
New start state with concat

e-trans to old starts
- New final state with
e-trans from old

finals

Thompson’s Construction Alg.

Build the RegEx Tree | Replace nodes bottom-up

Alternation:
New start state with concat

e-trans to old starts
- New final state with
e-trans from old

finals

Thompson’s Construction Alg.

Build the RegEx Tree | Replace nodes bottom-up

Alternation:
New start state with
e-trans to old starts
New final state with
e-trans from old
finals

Thompson’s Construction Alg.

Build the RegEx Tree | Replace nodes bottom-up

Repetition (* operator):

- New start state with concat
g-edge to old start

- New final state with
g-edge from new start
- e-edge from final to
start

Thompson’s Construction Alg.

Build the RegEx Tree | Replace nodes bottom-up

Repetition (* operator):
- New start state with
g-edge to old start

- New final state with
g-edge from new start

- e-edge from final to

Thompson’s Construction Alg.

Build the RegEx Tree | Replace nodes bottom-up

Repetition (* operator):

- New start state with

g-edge to old start

- New final state with concat

g-edge from new start /\ D
- e-edge from final to
start

20

Thompson’s Construction Alg.

Build the RegEx Tree | Replace nodes bottom-up

Concatenation:

- Add e-edge from first FSM’s final state to [}
second FSM’s start state
Remove final status from first FSM concat

21

Thompson’s Construction Alg.

Build the RegEx Tree | Replace nodes bottom-up

Concatenation:

- Add e-edge from first FSM’s final state to [}
second FSM’s start state
Remove final status from first FSM concat

22

Thompson’s Construction Alg.

Build the RegEx Tree | Replace nodes bottom-up

Thompson’s Construction: Side-Note

Build the RegEx Tree | Replace nodes bottom-up

The FSMs produced by
Thompsons Construction
are a little bit messy!

* Clearly less efficient than
what we would do by hand

* Designed for ease of proofs

* In practice, it’s easy to
minimize FSMs later

24

From Regkx to DFA

Lecture 2 — Implementing Scanners

s-free
Reji] e-NFA NFA DFA
Thompson’s g-elimination Rabin-5cott
Construction Powerset
Algorithm Construction

2

Eliminating e-transitions

Lecture 2 — Implementing Scanners

Observation: You never see an epsilon in the input

* Consuming a character means taking a “chain” of zero-or-more
g-edges then a real character edge

Algorithm Intuition: cut out the middleman
* Replace all “chains” with a direct real-character edge

26

Eliminating e-transitions

Lecture 2 — Implementing Scanners

* Compute e-close(s), the set of states reachable via O or
more &-edges from s

e Copy all states from N to an &-free version, N’
 Putsin F’ if e-close(s) contains a state in F
* Puts,c > tind’ if thereis a c-edge totin e-close(s)

Example, Step |

Eliminating &-Transitions

Let e-close(s) be the set of states reachable via 0 or more €-edges

@ e-close(S) ={S,1,3,6}

e-close(3) = {3, 6}

e-close(1) = {1}
e-close(2) = {2}
e-close(4) = {4}
g-close(5) = {5}

X ‘ e-close(6) = {6}

S
€
X

x
M
wn

‘x‘XOM : :

Example, Step I

Eliminating &-Transitions

Copy all states from N to N’

e-close(S) ={S,1,3,6}
e-close(3) = {3, 6}
e-close(1) = {1}
e-close(2) = {2}
e-close(4) = {4}
g-close(5) = {5}
e-close(6) = {6}

©0 6

000 ©

Example, Step Il

Eliminating &-Transitions

Put sin F’ if e-close(s) contains a state in F

@ e-close(S) ={S,1,3,5}

e-close(3) = {3, 6}

e-close(1) = {1}
e-close(2) = {2}
e-close(4) = {4}
g-close(5) = {5}

X ‘ e-close(6) = {6}

©00

S
€
X

000 ©

Example, Step IV

Eliminating &-Transitions

Puts,c = tin ¢’ if thereis a c-edge to t in &-close(s)

@ e-close(S) = {S(1)3,6}

e-close(3) = {3, 6}

®6-6

e-close(1) = {1}
e-close(2) = {2}
e-close(4) = {4}
g-close(5) = {5}

X ‘ e-close(6) = {6}

©00

000 ©

Example, Step IV

Eliminating &-Transitions

Puts,c = tin ¢’ if thereis a c-edge to t in &-close(s)

@ e-close(S) = {S,1(3)6}
e-close(3) = {3, 6}

e-close(1) = {1}
e-close(4) = {4} X
’ x e-close(5) = {5}
j X ‘ e-close(6) = {6}

e-close(2) = {2}

@ m‘

(2
©0 0

000 ©

Example, Step IV

Eliminating &-Transitions

Puts,c = tin ¢’ if thereis a c-edge to t in &-close(s)

@ e-close(S) ={S,1,3(6}

e-close(3) = {3, 6}
e-close(1) = {1}
e-close(2) = {2}
e-close(4) = {4} X
g-close(5) = {5}

y ‘ e-close(6) = {6}

&E
X
X

000
@00 6

S
€
X

x
M
wn

Example, Step IV

Eliminating &-Transitions

Puts,c = tin ¢’ if thereis a c-edge to t in &-close(s)
e-close(S) ={S,1,3,6} @
e-close(3) = {3, 6} @

e-close(1) = {1} ‘
e-close(4) = {4} X

g-close(5) = {5}

e-close(6) = {6} \<2> @

e-close(2) = {2}

‘x‘XOM : :

S
€
X

&

X

&E
X
X

Example, Done!

Eliminating &-Transitions

Q00

000 ¥

Example, Step IV

Eliminating &-Transitions

Puts,c = tin ¢’ if thereis a c-edge to t in &-close(s)

(& (&

& &E
S @
g @
X
X C
’ x
@ X °
X X
X e
‘ x ‘ ’

From Regkx to DFA

Lecture 2 — Implementing Scanners

RegEx

e-NFA

~

Thompson’s
Construction
Algorithm

2

/

s-free
NFA

DFA

e-elimination

v

Rabin-Scott
Powerset
Construction

37

Recall: NFA Matching Procedure

Rabin-Scott Powerset construction

y/\ Successor

* NFA can “choose” which Sx={SA} Rx={D} set of
transition to take Sy={s} Ry={D} “aves
o Always moves to states Ax = {R} D,x = {}
that leads to acceptance Ay={R} Dy={}
(if possible) NFA

* Simulate set of states ° - X'y X'y
the NFA could be in
X,Y

* |f any state in the ending

set is final, string Input String | x| |x| |y| [x
accepted
< S-S
possible | g S A A
states A R R D

From Successors to Powerset DFA

Rabin-Scott Powerset Construction

S,x = {S,A} Ax = {R} R,x = {D} D,x = {}
S,y = {S} Ay = {R} R,y = {D} Dy ={}

X’yx’y

From Successors to Powerset DFA

Rabin-Scott Powerset Construction

S,x = {S,A} Ax = {R} R,x = {D} D,x = {}
S,y = {S} Ay = {R} R,y = {D} Dy ={}

{S,A}, x = S,x U AXx
= {S,A} U {R}
= {S,A,R}

X’yx’y

From Successors to Powerset DFA

Rabin-Scott Powerset Construction

S,x = {S,A} Ax = {R} R,x = {D} D,x = {}
S,y = {S} Ay = {R} R,y = {D} Dy ={}

{S,AL,y= S,y U Ay
= {S} U {R}

From Successors to Powerset DFA

Rabin-Scott Powerset Construction

S,x = {S,A} Ax = {R} R,x = {D} D,x = {}
S,y = {S} Ay = {R} R,y = {D} Dy ={}

X’yx’y

Exponential State Count

Rabin-Scott Powerset Construction

* How may states might the DFA have?
° 2|Q|

e Why 21QlI? -

D
0 {}
1 {D}
0 (A}
0 {S}
1

0

1

1

{A,D}
{S,A}
{S,D}

R P, P O r O O O Wn
) O Rk kL O L O O |>»

{S,A,D}

From Regkx to DFA

Lecture 2 — Implementing Scanners

RegEx £-NFA gl'\f ;Ze DFA
Thompson’s e-elimination Rabin-Scott
Construction ., Powerset

Algorithm Construction

v v

DONE!
... Or are we?

44

DFA =£ Tokenizer

Limitations

* Finite automata only check
for language membership
of a string (recognition)

e The Scanner needs to

* Break the input into many
different tokens

 Know what characters
comprise the token

inta; b=3+2;

Lo U

45

DFA =£ Tokenizer

Limitations

* Finite automata only check
for language membership
of a string (recognition)

e The Scanner needs to

* Break the input into many
different tokens

 Know what characters
comprise the token

We need to go... beyond
recognition

46

[

Source code in S

(sequence of chars)

|

A\ 4

Next Time

Lecture 3 Preview

Lexical Definition

Lexical Recognition

Tokenlzatlon

Scanner

Semantic analysis

v

(. N
Intermediate code

generation

v

IR optimization

Final Code
generation

~

\.

Final code
optimization

J

v

[Output code in T]

__Lexical analysis ’ ’ H‘“\e
v Syntactic Definition Syntactic Recognition Parsing
Parser)
n)
Syntactic analysis | H‘“\e \SOO “s()()“‘

47

	Slide 1: Check-In Review: Compiler Overview
	Slide 2: Administriva Housekeeping
	Slide 3: Administriva Housekeeping
	Slide 4: Surveys (Mostly) Processed Housekeeping
	Slide 5: 2 – Implementing Scanners
	Slide 6: Compiler Construction Progress Pics
	Slide 7: Last Time Review: Overview
	Slide 8: Lecture Overview Lecture 2 – Implementing Scanners
	Slide 9: Key Concept Thompson’s Construction Algorithm
	Slide 10: Thompson’s Construction Intuition Thompson’s Construction Algorithm
	Slide 11: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 12: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 13: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 14: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 15: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 16: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 17: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 18: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 19: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 20: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 21: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 22: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 23: Thompson’s Construction Alg. Build the RegEx Tree | Replace nodes bottom-up
	Slide 24: Thompson’s Construction: Side-Note Build the RegEx Tree | Replace nodes bottom-up
	Slide 25: From RegEx to DFA Lecture 2 – Implementing Scanners
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Recall: NFA Matching Procedure Rabin-Scott Powerset construction
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

