What is an example of an input to a C compiler that would cause a lexical analysis error?

What is an example of an input to a C compiler that would cause a syntactic analysis error?

Administriva
 Housekeeping

Project 1

- Out tonight
- Add Flex rules for our language
- Might want to find a project partner!

What should we call our language?

Surveys (Mostly) Processed
 Housekeeping

- We will do flipped Wednesdays
- I'll try to put out some 510 review

2 - Implementing Scanners

Compiler Construction

Progress Pics

Currently working on lexical analysis concepts

Lecture Overview

Lecture 2 - Implementing Scanners

Walk through the translation process formally

Key Concept
 Thompson's Construction Algorithm

Use an expression tree:

- Leaf: atomic operand
- Branch: operations joining subtrees

Expression Tree Examples

Arithmetic Expression

$$
1+2 \times 3+4
$$

Arithmetic Expression Tree

RegEx
$a \mid b^{*}$
Expression Tree

b

Thompson's Construction Intuition

Thompson's Construction Algorithm

Two-Step Process:

- Break the RegEx down to the simplest units with "obvious" FSMs (i.e. expression tree leaves)
- Combine the sub-FSMs according to operator rules (i.e. expression tree branch rules)

Recombobulation Area

Thompson's Construction Alg.
 Build the RegEx Tree \| Replace nodes bottom-up

Thompson's Construction Alg.
 Build the RegEx Tree \| Replace nodes bottom-up

Thompson's Construction Alg.
 Build the RegEx Tree Replace nodes bottom-up

Alternation:

- New start state with ε-trans to old starts
- New final state with ε-trans from old finals
$(\mathrm{a} \mid \varepsilon)(\mathrm{c}|\mathrm{d}| \mathrm{b})^{*}$

concat

$(c|d| b)^{*}$

Thompson's Construction Alg.
 Build the RegEx Tree Replace nodes bottom-up

Alternation:

- New start state with ε-trans to old starts
- New final state with ε-trans from old finals

$(a \mid \varepsilon)(c|d| b)^{*}$

concat

$(c|d| b)^{*}$

Thompson's Construction Alg.
 Build the RegEx Tree Replace nodes bottom-up

Alternation:

- New start state with ε-trans to old starts
- New final state with ε-trans from old finals

$(a \mid \varepsilon)(c|d| b)^{*}$

concat

$(c|d| b)^{*}$

Thompson's Construction Alg.
 Build the RegEx Tree Replace nodes bottom-up

Alternation:

- New start state with ε-trans to old starts
- New final state with ε-trans from old finals

$(a \mid \varepsilon)(c|d| b)^{*}$

concat

Thompson's Construction Alg.
 Build the RegEx Tree Replace nodes bottom-up

Alternation:

- New start state with ε-trans to old starts
- New final state with ε-trans from old finals

(a|c)(c|d|b)*

concat

$(c|d| b)^{*}$

Thompson's Construction Alg.
 Build the RegEx Tree Replace nodes bottom-up

Repetition (* operator):

- New start state with

(a|c)(c|d|b)*

ε-edge to old start

- New final state with ε-edge from new start
- ε-edge from final to start

Thompson's Construction Alg.
 Build the RegEx Tree Replace nodes bottom-up

```
Repetition (* operator ):
```

- New start state with $(a \mid \varepsilon)(c|d| b)^{*}$
ε-edge to old start
- New final state with

concat

ε-edge from new start

- ε-edge from final to start

Thompson's Construction Alg.
 Build the RegEx Tree Replace nodes bottom-up

```
Repetition (* operator ):
```

- New start state with
$(a \mid \varepsilon)(c|d| b)^{*}$
ε-edge to old start
- New final state with
concat
ε-edge from new start
- ε-edge from final to start

Thompson's Construction Alg.
 Build the RegEx Tree Replace nodes bottom-up

Concatenation:

- Add ε-edge from first FSM’s final state to second FSM's start state
- Remove final status from first FSM CONCat

$$
(a \mid \varepsilon)(c|d| b)^{*}
$$

Thompson's Construction Alg.
 Build the RegEx Tree Replace nodes bottom-up

Concatenation:

- Add ε-edge from first FSM’s final state to second FSM's start state
- Remove final status from first FSM CONCat

$$
(a \mid \varepsilon)(c|d| b)^{*}
$$

Thompson's Construction Alg.

Build the RegEx Tree \| Replace nodes bottom-up
$(a \mid \varepsilon)(c|d| b)^{*}$

Thompson's Construction: Side-Note

Build the RegEx Tree \| Replace nodes bottom-up
The FSMs produced by Thompsons Construction are a little bit messy!

- Clearly less efficient than what we would do by hand
- Designed for ease of proofs
- In practice, it's easy to minimize FSMs later

From RegEx to DFA
 Lecture 2 - Implementing Scanners

Eliminating ε-transitions

Lecture 2 - Implementing Scanners
Observation: You never see an epsilon in the input

- Consuming a character means taking a "chain" of zero-or-more ε-edges then a real character edge

Algorithm Intuition: cut out the middleman

- Replace all "chains" with a direct real-character edge

Eliminating ε-transitions

Lecture 2 - Implementing Scanners

- Compute ε-close(s), the set of states reachable via 0 or more ε-edges from s
- Copy all states from N to an ε-free version, N^{\prime}
- Put s in F^{\prime} if ε-close(s) contains a state in F
- Put $\mathrm{s}, \mathrm{c} \rightarrow \mathrm{t}$ in δ^{\prime} if there is a c -edge to t in ε-close(s)

Example, Step I

Eliminating ε-Transitions
Let ε-close(s) be the set of states reachable via 0 or more ε-edges

$$
\begin{aligned}
& \varepsilon \text {-close }(S)=\{S, 1,3,6\} \\
& \varepsilon \text {-close }(3)=\{3,6\} \\
& \varepsilon \text {-close }(1)=\{1\} \\
& \varepsilon \text {-close }(2)=\{2\} \\
& \varepsilon \text {-close }(4)=\{4\} \\
& \varepsilon \text {-close }(5)=\{5\} \\
& \varepsilon \text {-close }(6)=\{6\}
\end{aligned}
$$

Example, Step II
 Eliminating ε-Transitions

Copy all states from N to N^{\prime}

$$
\begin{aligned}
& \varepsilon \text {-close }(S)=\{S, 1,3,6\} \\
& \varepsilon \text {-close }(3)=\{3,6\} \\
& \varepsilon \text {-close }(1)=\{1\} \\
& \varepsilon \text {-close }(2)=\{2\} \\
& \varepsilon \text {-close }(4)=\{4\} \\
& \varepsilon \text {-close }(5)=\{5\} \\
& \varepsilon \text {-close }(6)=\{6\}
\end{aligned}
$$

Example, Step III

Eliminating ε-Transitions
Put $\sin \mathrm{F}^{\prime}$ if ε-close(s) contains a state in F

$$
\begin{aligned}
& \varepsilon \text {-close }(S)=\{S, 1,3,6\} \\
& \varepsilon \text {-close }(3)=\{3,6\} \\
& \varepsilon \text {-close }(1)=\{1\} \\
& \varepsilon \text {-close }(2)=\{2\} \\
& \varepsilon \text {-close }(4)=\{4\} \\
& \varepsilon \text {-close }(5)=\{5\} \\
& \varepsilon \text {-close }(6)=\{6\}
\end{aligned}
$$

Example, Step IV

Eliminating ε-Transitions
Put $\mathrm{s}, \mathrm{c} \rightarrow \mathrm{t}$ in δ^{\prime} if there is a c-edge to t in ε-close(s)

$$
\begin{aligned}
& \varepsilon \text {-close }(S)=\{\mathrm{S}, 13,6\} \\
& \varepsilon \text {-close }(3)=\{3,6\} \\
& \varepsilon \text {-close }(1)=\{1\} \\
& \varepsilon \text {-close }(2)=\{2\} \\
& \varepsilon \text {-close }(4)=\{4\} \\
& \varepsilon \text {-close }(5)=\{5\} \\
& \varepsilon \text {-close }(6)=\{6\}
\end{aligned}
$$

Example, Step IV

Eliminating ε-Transitions
Put $\mathrm{s}, \mathrm{c} \rightarrow \mathrm{t}$ in δ^{\prime} if there is a c-edge to t in ε-close(s)

$$
\begin{aligned}
& \varepsilon \text {-close }(S)=\{\mathrm{S}, 1,3) 6\} \\
& \varepsilon \text {-close }(3)=\{3,6\} \\
& \varepsilon \text {-close }(1)=\{1\} \\
& \varepsilon \text {-close }(2)=\{2\} \\
& \varepsilon \text {-close }(4)=\{4\} \\
& \varepsilon \text {-close }(5)=\{5\} \\
& \varepsilon \text {-close }(6)=\{6\}
\end{aligned}
$$

Example, Step IV

Eliminating ε-Transitions
Put $\mathrm{s}, \mathrm{c} \rightarrow \mathrm{t}$ in δ^{\prime} if there is a c-edge to t in ε-close(s)

ε-close $(S)=\{S, 1,3,6$
ε-close $(3)=\{3,6\}$
ε-close $(1)=\{1\}$
ε-close(2) $=\{2\}$
ε-close $(4)=\{4\}$
ε-close $(5)=\{5\}$
ε-close $(6)=\{6\}$

Example, Step IV

Eliminating ε-Transitions
Put $\mathrm{s}, \mathrm{c} \rightarrow \mathrm{t}$ in δ^{\prime} if there is a c-edge to t in ε-close(s)
Note: this definition necessarily preserves all original non- edges

$$
\begin{aligned}
& \varepsilon \text {-close }(S)=\{S, 1,3,6\} \\
& \varepsilon \text {-close }(3)=\{3,6\} \\
& \varepsilon \text {-close }(1)=\{1\} \\
& \varepsilon \text {-close }(2)=\{2\} \\
& \varepsilon \text {-close }(4)=\{4\} \\
& \varepsilon \text {-close }(5)=\{5\} \\
& \varepsilon \text {-close }(6)=\{6\}
\end{aligned}
$$

Example, Done!
 Eliminating ε-Transitions

Can also remove unreachable "useless" state

Example, Step IV

Eliminating ε-Transitions
Put $\mathrm{s}, \mathrm{c} \rightarrow \mathrm{t}$ in δ^{\prime} if there is a c-edge to t in ε-close(s)

From RegEx to DFA
Lecture 2 - Implementing Scanners

Recall: NFA Matching Procedure Rabin-Scott Powerset construction

- NFA can "choose" which transition to take

- Always moves to states that leads to acceptance (if possible)
- Simulate set of states the NFA could be in
- If any state in the ending set is final, string accepted

From Successors to Powerset DFA Rabin-Scott Powerset Construction

$S, x=\{S, A\}$	$A, x=\{R\}$	$R, x=\{D\}$	$D, x=\{ \}$
$S, y=\{S\}$	$A, y=\{R\}$	$R, y=\{D\}$	$D, y=\{ \}$

From Successors to Powerset DFA Rabin-Scott Powerset Construction

$S, x=\{S, A\}$	$A, x=\{R\}$	$R, x=\{D\}$	$D, x=\{ \}$
$S, y=\{S\}$	$A, y=\{R\}$	$R, y=\{D\}$	$D, y=\{ \}$

$\{S, A\}, x=S, x \cup A, x$

$$
=\{S, A\} \cup\{R\}
$$

$$
=\{S, A, R\}
$$

From Successors to Powerset DFA Rabin-Scott Powerset Construction

$S, x=\{S, A\}$	$A, x=\{R\}$	$R, x=\{D\}$	$D, x=\{ \}$
$S, y=\{S\}$	$A, y=\{R\}$	$R, y=\{D\}$	$D, y=\{ \}$

$$
\{S, A\}, y=S, y \cup A, y
$$

$$
=\{S\} \quad \cup\{R\}
$$

$$
=\{S, R\}
$$

From Successors to Powerset DFA Rabin-Scott Powerset Construction

$S, x=\{S, A\}$	$A, x=\{R\}$	$R, x=\{D\}$	$D, x=\{ \}$
$S, y=\{S\}$	$A, y=\{R\}$	$R, y=\{D\}$	$D, y=\{ \}$

Exponential State Count
 Rabin-Scott Powerset Construction

- How may states might the DFA have?
- $2^{|Q|}$
- Why $2^{|Q|}$?

$\underline{\mathbf{S}}$	$\underline{\mathbf{A}}$	$\underline{\mathbf{D}}$	
0	0	0	$\}$
0	0	1	$\{D\}$
0	1	0	$\{A\}$
1	0	0	$\{S\}$
0	1	1	$\{A, D\}$
1	1	0	$\{S, A\}$
1	0	1	$\{S, D\}$
1	1	1	$\{S, A, D\}$

DFA \neq Tokenizer
 Limitations

- Finite automata only check for language membership of a string (recognition)
- The Scanner needs to
- Break the input into many different tokens
- Know what characters comprise the token

DFA $\boldsymbol{y}_{\boldsymbol{c}}$ Tokenizer
 Limitations

- Finite automata only check for language membership of a string (recognition)
- The Scanner needs to
- Break the input into many different tokens
- Know what characters comprise the token
We need to go... beyond recognition

Lecture 3 Preview

