

What is an example of an input to a C compiler that would cause a lexical analysis error?

What is an example of an input to a C compiler that would cause a syntactic analysis error?

Project 1

- Out tonight
- Add Flex rules for our language
- Might want to find a project partner!

What should we call our language?

Surveys (Mostly) Processed Housekeeping

- We will do flipped Wednesdays
- I'll try to put out some 510 review

KU | EECS 665 | Drew Davidson

CONSTRUCTION

2 – Implementing Scanners

Compiler Construction Progress Pics

Currently working on lexical analysis concepts

 Convert the character stream from the user into the token stream (the "words" of the programming language)

Last Time

Review: Overview

Introduced a definition of a compiler and its workflow

Used RegExs to *specify* languages of tokens

<u>Token</u>

Integer Literal

RegEx

0|(1|2|...|9)(0|1|...|9)*

Claimed RegExs can be automatically translated to *recognize* languages

RegEx

DFA

In lab we showed a tool that automatically does this translation (Flex)

You Should Know

- The phases of the compiler and what each step does
- What errors the various phases catch
- How to specify a token's lexemes with a regex

Lecture Overview

Lecture 2 – Implementing Scanners

Walk through the translation process formally

Key Concept Thompson's Construction Algorithm

Use an expression tree:

- Leaf: atomic operand
- Branch: operations joining subtrees

Expression Tree Examples

Thompson's Construction Intuition Thompson's Construction Algorithm

Two-Step Process:

- Break the RegEx down to the simplest units with "obvious" FSMs (i.e. expression tree leaves)
- Combine the sub-FSMs according to operator rules (i.e. expression tree branch rules)

Recombobulate the Regex into an FSM piecewise

Thompson's Construction Alg.

Build the RegEx Tree | Replace nodes bottom-up

 $(a|\varepsilon)(c|d|b)^*$

Alternation:

New start state with ε -trans to old starts

New final state with ε -trans from old finals

Alternation:

New start state with ε -trans to old starts

New final state with ε -trans from old finals

 $(a|\varepsilon)(c|d|b)^*$ concat (c|d|b)*a c|d|b d|b

Alternation:

New start state with ε -trans to old starts

New final state with ε -trans from old finals

a

 $(a|\varepsilon)(c|d|b)^*$ concat (c|d|b)* c|d|b d|b

Alternation:

 \mathcal{E}

 S_{M}

New start state with ε -trans to old starts

New final state with ε -trans from old finals

 $(a|\varepsilon)(c|d|b)^*$ concat (c|d|b)* a c|d|b d|b Ν M

concat

Alternation:

New start state with ε -trans to old starts

New final state with ε -trans from old finals

 $(a|\varepsilon)(c|d|b)^*$

 $(a|\varepsilon)(c|d|b)^*$

Repetition (* operator):

- New start state with ε -edge to old start

- New final state with ε -edge from new start

- ε -edge from final to start

Concatenation:

Add ε -edge from first FSM's final state to second FSM's start state

Remove final status from first FSM

 $(a|\varepsilon)(c|d|b)^*$

concat

Concatenation:

Add ε -edge from first FSM's final state to second FSM's start state

Remove final status from first FSM

 $(a|\varepsilon)(c|d|b)^*$

concat

 $(a|\varepsilon)(c|d|b)^*$

Thompson's Construction: Side-Note

Build the RegEx Tree | Replace nodes bottom-up

The FSMs produced by Thompsons Construction are a little bit messy!

- Clearly less efficient than what we would do by hand
- Designed for ease of proofs
- In practice, it's easy to minimize FSMs later

From RegEx to DFA

Lecture 2 – Implementing Scanners

Eliminating ε -transitions

Lecture 2 – Implementing Scanners

Observation: You never see an epsilon in the input

• Consuming a character means taking a "chain" of zero-or-more ε -edges then a real character edge

Algorithm Intuition: cut out the middleman

Replace all "chains" with a direct real-character edge

Eliminating *E*-transitions

Lecture 2 – Implementing Scanners

- Compute ε -close(s), the set of states reachable via 0 or more ε -edges from s
- Copy all states from N to an ε -free version, N'
- Put s in F' if ε -close(s) contains a state in F
- Put s,c \rightarrow t in δ ' if there is a c-edge to t in ε -close(s)

Example, Step I Eliminating ε -Transitions

Let ε -close(s) be the set of states reachable via 0 or more ε -edges

$$\varepsilon$$
-close(S) = {S,1,3,6}

$$\varepsilon$$
-close(3) = {3, 6}

$$\varepsilon$$
-close(1) = {1}

$$\varepsilon$$
-close(2) = {2}

$$\varepsilon$$
-close(4) = {4}

$$\varepsilon$$
-close(5) = {5}

$$\varepsilon$$
-close(6) = {6}

Example, Step II Eliminating ε -Transitions

Copy all states from N to N'

$$\varepsilon$$
-close(S) = {S,1,3,6}

$$\varepsilon$$
-close(3) = {3, 6}

$$\varepsilon$$
-close(1) = {1}

$$\varepsilon$$
-close(2) = {2}

$$\varepsilon$$
-close(4) = {4}

$$\varepsilon$$
-close(5) = {5}

$$\varepsilon$$
-close(6) = {6}

Example, Step III Eliminating ε -Transitions

Put s in F' if ε -close(s) contains a state in F

$$\varepsilon$$
-close(S) = {S,1,3,6}

$$\varepsilon$$
-close(3) = {3, 6}

$$\varepsilon$$
-close(1) = {1}

$$\varepsilon$$
-close(2) = {2}

$$\varepsilon$$
-close(4) = {4}

$$\varepsilon$$
-close(5) = {5}

$$\varepsilon$$
-close(6) = {6}

Example, Step IV Eliminating ε-Transitions

Put s,c \rightarrow t in δ' if there is a c-edge to t in ε -close(s)

$$\varepsilon$$
-close(S) = {S,13,6}

$$\varepsilon$$
-close(3) = {3, 6}

$$\varepsilon$$
-close(1) = {1}

$$\varepsilon$$
-close(2) = {2}

$$\varepsilon$$
-close(4) = {4}

$$\varepsilon$$
-close(5) = {5}

$$\varepsilon$$
-close(6) = {6}

6

Example, Step IV Eliminating ε -Transitions

Put s,c \rightarrow t in δ' if there is a c-edge to t in ε -close(s)

$$\varepsilon$$
-close(S) = {S,1,36}

$$\varepsilon$$
-close(3) = {3, 6}

$$\varepsilon$$
-close(1) = {1}

$$\varepsilon$$
-close(2) = {2}

$$\varepsilon$$
-close(4) = {4}

$$\varepsilon$$
-close(5) = {5}

$$\varepsilon$$
-close(6) = {6}

Example, Step IV Eliminating ε-Transitions

Put s,c \rightarrow t in δ' if there is a c-edge to t in ε -close(s)

$$\varepsilon$$
-close(S) = {S,1,3(6)}

$$\varepsilon$$
-close(3) = {3, 6}

$$\varepsilon$$
-close(1) = {1}

$$\varepsilon$$
-close(2) = {2}

$$\varepsilon$$
-close(4) = {4}

$$\varepsilon$$
-close(5) = {5}

$$\varepsilon$$
-close(6) = {6}

6

Example, Step IV Eliminating ϵ -Transitions

Put s,c \rightarrow t in δ' if there is a c-edge to t in ε -close(s)

$$\varepsilon$$
-close(S) = {S,1,3,6}

$$\varepsilon$$
-close(3) = {3, 6}

$$\varepsilon$$
-close(1) = {1}

$$\varepsilon$$
-close(2) = {2}

$$\varepsilon$$
-close(4) = {4}

$$\varepsilon$$
-close(5) = {5}

$$\varepsilon$$
-close(6) = {6}

6

Example, Done! Eliminating ε-Transitions

Can also remove unreachable "useless" state

Example, Step IV Eliminating ε -Transitions

Put s,c \rightarrow t in δ' if there is a c-edge to t in ε -close(s)

From RegEx to DFA

Lecture 2 – Implementing Scanners

Recall: NFA Matching Procedure

- NFA can "choose" which transition to take
 - Always moves to states that leads to acceptance (if possible)
- Simulate <u>set</u> of states the NFA could be in
 - If any state in the ending set is final, string accepted

$$S,x = \{S,A\}$$

$$A,x = \{R\}$$

$$R,x = \{D\}$$

$$D, x = \{\}$$

$$S,y = \{S\}$$

$$S,y = \{S\}$$
 $A,y = \{R\}$

$$R,y = \{D\}$$

$$D,y = \{\}$$

$$S, x = \{S,A\} \qquad A, x = \{R\} \qquad R, x = \{D\} \qquad D, x = \{\}$$

$$S, y = \{S\} \qquad A, y = \{R\} \qquad R, y = \{D\} \qquad D, y = \{\}$$

$$\{S,A\}, x = S, x \cup A, x$$

$$= \{S,A\} \cup \{R\}$$

$$= \{S,A,R\}$$

$$\{S,A,R\}$$

$$S, x = \{S,A\} \qquad A, x = \{R\} \qquad R, x = \{D\} \qquad D, x = \{\}$$

$$S, y = \{S\} \qquad A, y = \{R\} \qquad R, y = \{D\} \qquad D, y = \{\}$$

$$\{S,A\}, y = S, y \cup A, y = \{S\} \cup \{R\} = \{S,R\}$$

$$= \{S,R\}$$

$$\{S,A, X \in \{S,A, X \in \{S,A, X \in \{S,A, R,D\}\}\}$$

$$\{S,A\} \qquad X \in \{S,A, R,D\}$$

$$\{S,A\} \qquad X \in \{S,A, R,D\}$$

$$\{S,A\} \qquad X \in \{S,A, R,D\}$$

$$\{S,R\} \qquad \{S,A, R,D\}$$

$$\{S,R\} \qquad \{S,R\} \qquad \{S,R,D\}$$

$$\{A,R\} \qquad \{A,R\}$$

$$S,x = \{S,A\}$$
 $A,x = \{R\}$ $R,x = \{D\}$ $D,x = \{\}$

$$S,y = \{S\}$$
 $A,y = \{R\}$ $R,y = \{D\}$ $D,y = \{\}$

Exponential State Count Rabin-Scott Powerset Construction

- How may states might the DFA have?
 - · 2|Q|
- Why 2 |Q|?

<u>S</u>	<u>A</u>	<u>D</u>	
0	0	0	{}
0	0	1	{D}
0	1	0	{A}
1	0	0	{S}
0	1	1	{A,D}
1	1	0	{S,A}
1	0	1	{S,D}
1	1	1	{S,A,D}

From RegEx to DFA

Lecture 2 – Implementing Scanners

DONE! ... or are we?

DFA # Tokenizer Limitations

- Finite automata only check for language membership of a string (recognition)
- The Scanner needs to
 - Break the input into many different tokens
 - Know what characters comprise the token

DFA # Tokenizer Limitations

- Finite automata only check for language membership of a string (recognition)
- The Scanner needs to
 - Break the input into many different tokens
 - Know what characters comprise the token

We need to go... beyond recognition

Next Time Lecture 3 Preview

