
Check-in
Review: Regular expressions

Write your name and answer the following on a piece of paper

• Explain the difference between the languages recognized by these regular expressions:
1. (cake)|(death)

2. cake|death

• Create a regular expression that is as short as possible (in terms of characters used to

write down the regular expression) but matches the same language as:
 a|(aa)|(a*)

• The ? operator is sometimes used to denote "zero or one" repetitions of its operand. As as
example a((bc)?) matches

• a (0 repetitions of bc)

• abc (1 repetition of bc).

Using the operators listed previously, change the above regular expression so that it doesn't use

the ? operator but specifies the same language of strings. Hint: you may use the empty string

symbol ε in your answer

1 – Overview

KU | EECS | Drew Davidson

Housekeeping
Administrivia & Announcements

Assignments

• Entry Survey out now
• Due tonight at 11:59 PM

• Lab 1 out tonight
• Due next Monday at 3:00 PM

• Lab 2 out by Friday
• Due next next Monday at 3:00 PM

• Will be the subject of in-person labs next week

Today’s Roadmap
Lecture Outline

• Orientation
- About me

- About you

- About the course

• Overview the Compiler

• Lexical Specification

About Me

(Assistant) Professor

Andrew “Drew” Davidson
Pronouns: he/him/his

• Preferred: “Drew”
• Ok: “Professor Davidson”, “Dr. Davidson”
• Never: “Andy”, “Andrew”, “Mr. Davidson”, “Dr. Drew”

[1]: Credit: www.podcastone.com/Dr-Drew-Show

Dr. Drew (Extremely not me) [1]

What to call me
About Me

About Me: The Job of a Professor
About the class: FAQ

The actual start of my job offer letter from KU:

I’m a Busy Little Honeybee!
About Me

I love my job!

• But there is a lot of it

• I’d happily spend 40hrs/wk just on
this class

Takeaways

• Delays in email/grading can happen

• I’m too busy to help?

• Office hours are just for you

• I try to scale my help

No! I’m here

for you!

This drives several

course policies

I am pretty friendly
• I’ll make an effort to learn

every student’s name
• If you see me outside of class,

feel free to say “hi!”
I like when you visit office hours
• Appreciate when you come

with a specific question

Interacting with Me
About Me

(I think)

About You

Your Time is Valuable!
Orientation - About You

There are a lot of assignments

• Most of them are very quick

You don’t have to come to class

• You are rewarded for doing so

One Small Favor
Orientation - About You

Help me to make this class pleasant

• If you come to class, try to engage
- Frown when you are confused

- Grin when you are amused

- Ask questions if you have them

• If you have feedback, let me know!

This course is built for y’all
Orientation - About You

I value feedback
- This course improves by matching

your needs

- I encourage questions, comments,
etc. (within reason)

I’ve taught this course before
…but I’ve never taught YOU this
course before

About The Class

What I think you NEED to Know
About the class

Read the syllabus: https://compilers.cool/syllabus.pdf

https://compilers.cool/syllabus.pdf

What I think you WANT to Know
About the class

How ‘bout that Covid, eh?
About the class

Too Sick for Class?

• You’re never required to come to class
(except for tests)

• If you’re too sick for a test, we’ll do a
makeup

Too Sick to work?

• Homework should take way less time
than you’re given

• Projects can collectively be turned in 6
days late for no penalties

Is This Class Hard?
About the class: FAQ

Definitely

this option

Is Drew a Good Teacher?
About the class: FAQ

My core philosophy: teach the class I’d want to take

Is Drew a Good Teacher?
About the class: FAQ

My couse design goal: teach the class I’d want to take

• Put a lot of material in the course

• Only post assignments after material is covered

• Allow more time on assignments than needed

• Make myself available
• Phone alerts for Piazza posts
• Respect office hours

• Never require participation, always reward it

• Provide lots of status/understanding checks
• The class is out of exactly 1000 points
• Frequent assignments, exercises in the class readings
• If you want to go above and beyond, extra assignments

Is This Class Hard?
About the class: FAQ

Definitely

this option

may depend on definition of “hard”

The class should be hard, because constructing compilers is hard

Let’s go with

“conceptually complex”

Let’s judge a book by it’s cover
 About the class: A brief aside on complexity

• Programming Languages
Cute teddy bear!

• Operating Systems
Fun circus!

• Compilers…

 A dragon to murder

(and the dragon is pissed)

That’s just one book, right?
About the class: A brief aside on complexity

Uhh, actually dragons are like a whole thing

But why dragons?

Dragons: symbols of the unknowable
About the class: A brief aside on complexity

“HC SVNT

DRACONES”

Roughly:

“Here be

dragons”

This Class is About Complexity of Design
About the class: A brief aside on complexity

We’ll wield the classic tools to
combat complexity:

• Formalisms

• Abstractions

• Modularity

• Disciplined software design

Explore Design Complexity through Implementation
About the class

Let’s Build a Compiler!

• Seems like a good thing to do in a
class called “Compiler
Construction”

• Regardless of your interest in
compilers, you’ll get to do some
non-trivial code development

Today’s Lecture Roadmap
Lesson Outline

• Orientation
- About you

- About me

- About the course

• Overview the Compiler

• Lexical Specification

What is a Compiler?
Overview the Compiler

(Audience participation)

What is a Compiler?
Overview the Compiler

Compiler

Output code in T

Source code
(sequence of chars) Our working definition of a compiler

A recognizer of source language S and
a translator from source language S
to target language T written in host
language H

S

T

H

Our compiler
Host Language H = C++
Target language T = X64
Source language = ???

Audience Participation:
What should we name our language?

For Us: C++
(or whatever you want)

???

For Us: X64
(very cool choice)

What is a Compiler?
Overview the Compiler

Compiler

Output code in T

Source code
(sequence of chars)

Great! With our language defined, we can
resume exploring the compiler’s structure

What is a Compiler?
Overview the Compiler

Compiler

Output code in T

Source code
(sequence of chars)

≈

Output code in T

Source code
(sequence of chars)

Frontend

Middleend

Backend

Traditional compilers
Divided into phases
• Frontend: input handling
• Middleend: program reasoning
• Backend: output handling

What is a Compiler?
Overview the Compiler

Traditional compilers
Divided into phases
• Frontend: input handling
• Middleend: program reasoning
• Backend: output handling

Scanner
Lexical analysis

Parser
Syntactic analysis

Semantic analysis

Intermediate code
generation

IR optimization

Final Code
generation

Final code
optimization

Output code in T

Source code
(sequence of chars)

Frontend

Middleend

Backend

What do these
modules do?

Phases further divided into modules

What is a Compiler?
Overview the Compiler

Scanner
Lexical analysis

Parser
Syntactic analysis

Semantic analysis

Intermediate code
generation

IR optimization

Final Code
generation

Final code
optimization

Scanner: Transform input characters into tokens
(the “words” of the language)

Parser: arrange tokens into syntax
(the “sentences” and “paragraphs” of the language)

Semantic Analysis: Check properties of the
AST and add metadata

Name analysis: bind identifiers
to their symbols

Type analysis: associate types
with operationsIntermediate codegen: Transform AST into a more

“operational” internal representation

Intermediate Representation Optimization:
Structural improvements

Final Code Generation: Translate IR into target
language representation

Final Code Optimization: target-specific
optimizations

Compiler’s Recognizer Duties
Overview the Compiler

Scanner
Lexical analysis

Parser
Syntactic analysis

Semantic analysis

Intermediate code
generation

IR optimization

Final Code
generation

Final code
optimization

Scanner: Transform input characters into tokens
(the “words” of the language)

Parser: arrange tokens into syntax
(the “sentences” and “paragraphs” of the language)

Semantic Analysis: Check properties of the
AST and add metadata

Name analysis: bind identifiers
to their symbols

Type analysis: associate types
with operationsIntermediate codegen: Transform AST into a more

“operational” internal representation

Intermediate Representation Optimization:
Structural improvements

Final Code Generation: Translate IR into target
language representation

Final Code Optimization: target-specific
optimizations

Lexical errors

Syntactic errors
Naming errors

Type errors

Our Class Workflow
Overview the Compiler

Scanner
Lexical analysis

Parser
Syntactic analysis

Semantic analysis

Intermediate code
generation

IR optimization

Final Code
generation

Final code
optimization

P1

P2

P3
P4

P5

P6

P7 P8

We’ll work through the compiler front-to-back

• Pause on background information as needed

• Review underlying theory, implementation details,
and techniques as needed

Often need to…
• Precisely define / express some language concept
• Build a recognizer of that concept
• Build a translator for that concept

Exploring Lexical Analysis Design
Lexicial Analysis

Scanner
Lexical analysis

Parser
Syntactic analysis

Semantic analysis

Intermediate code
generation

IR optimization

Final Code
generation

Final code
optimization

P1

P2

P3
P4

P5

P6

P7 P8

We’ll work through the compiler front-to-back

• Pause on background information as needed

• Review underlying theory, implementation details,
and techniques as needed

Often need to…
• Precisely define / express some language concept
• Build a recognizer of that concept
• Build a translator for that concept

Exploring Lexical Analysis Design
Overview the Compiler

We’ll use some (hopefully) familiar theory
techniques in building the scanner:
• Regular Languages / Regular Expressions
• Deterministic Finite Automata
• Nondeterministic Finite Automata

Scanner
Lexical analysis

These would be good concepts to
review if you’re shaky on them

Often need to…
• Precisely define / express some language concept
• Build a recognizer of that concept
• Build a translator for that concept

Describe the tokens (i.e. the “words”) of the language using regular expressions

Lexical Definition
Overview the Compiler

Token
Integer Literal

Examples
1 230 0|(1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)*

star * “*”

Closed under…
• Concatenation

• Union

• Repetition

• Complementation

…and more!

Equivalent to DFAs

Key RegEx Features
RegEx Properties

By Construction!

39

RegEx ≡ DFA… So What?
RegEx Properties

40
This matters for implementation!

DFAs: Easy to Implement
RegEx Properties

41

S A D
x,yx

D

x y

S A

A D D

D

S,x = A

A,x = D

A,y = D

DFA (Graph Depiction)

DFA (Array Implementation)DFA (Successor Notation)

<Current state>,<Transition symbol> = <next state> Row: current state
Column: transition symbol
Cell: next state

RegEx ≡ DFA… So What?
RegEx Properties

42

Often need to…
• Precisely define / express language concept
• Build a recognizer of that concept
• Build a translator for that concept

(From 3 slides ago)

Define tokens as regular expressions

Automatically convert regExes to DFAs

Run recognizer as DFA tables

Lecture Wrap-Up
Goodbye for now!

Summary

• Working definition of a compiler

• Compiler overview
• Phases of the compiler

• Modules of the phases

Next Lecture

• Describe how we can build a
token recognizer from the
specification

Your ToDos:
• Survey due at midnight tonight
• If you missed class, C1 is due Sunday at

midnight
• Familiarize yourself with

https://compilers.cool
• Sign up for Piazza
• If you need some theory review, check out

https://compilers.cool/theory_review/

https://compilers.cool/
https://compilers.cool/theory_review/

	Slide 1: Check-in Review: Regular expressions
	Slide 2: 1 – Overview
	Slide 3: Housekeeping Administrivia & Announcements
	Slide 4: Today’s Roadmap Lecture Outline
	Slide 5
	Slide 6: What to call me About Me
	Slide 7: About Me: The Job of a Professor About the class: FAQ
	Slide 8: I’m a Busy Little Honeybee! About Me
	Slide 9: Interacting with Me About Me
	Slide 10
	Slide 11: Your Time is Valuable! Orientation - About You
	Slide 12: One Small Favor Orientation - About You
	Slide 13: This course is built for y’all Orientation - About You
	Slide 14
	Slide 15: What I think you NEED to Know About the class
	Slide 16: What I think you WANT to Know About the class
	Slide 17: How ‘bout that Covid, eh? About the class
	Slide 18: Is This Class Hard? About the class: FAQ
	Slide 19: Is Drew a Good Teacher? About the class: FAQ
	Slide 20: Is Drew a Good Teacher? About the class: FAQ
	Slide 21: Is This Class Hard? About the class: FAQ
	Slide 22: Let’s judge a book by it’s cover About the class: A brief aside on complexity
	Slide 23: That’s just one book, right? About the class: A brief aside on complexity
	Slide 24: Dragons: symbols of the unknowable About the class: A brief aside on complexity
	Slide 25: This Class is About Complexity of Design About the class: A brief aside on complexity
	Slide 26: Explore Design Complexity through Implementation About the class
	Slide 27: Today’s Lecture Roadmap Lesson Outline
	Slide 28: What is a Compiler? Overview the Compiler
	Slide 29: What is a Compiler? Overview the Compiler
	Slide 30: What is a Compiler? Overview the Compiler
	Slide 31: What is a Compiler? Overview the Compiler
	Slide 32: What is a Compiler? Overview the Compiler
	Slide 33: What is a Compiler? Overview the Compiler
	Slide 34: Compiler’s Recognizer Duties Overview the Compiler
	Slide 35: Our Class Workflow Overview the Compiler
	Slide 36: Exploring Lexical Analysis Design Lexicial Analysis
	Slide 37: Exploring Lexical Analysis Design Overview the Compiler
	Slide 38: Lexical Definition Overview the Compiler
	Slide 39: Key RegEx Features RegEx Properties
	Slide 40: RegEx identical to DFA… So What? RegEx Properties
	Slide 41: DFAs: Easy to Implement RegEx Properties
	Slide 42: RegEx identical to DFA… So What? RegEx Properties
	Slide 43: Lecture Wrap-Up Goodbye for now!

