Check-In

Review: Type Systems

Give an example of a C program that uses type coercion

Announcements

Housekeeping

AP3 ultimate deadline tonight
APANB f S| ASR 4G { | iadBNdy @ 1152 PNN/+ALyhihdte

‘. : _‘- . | | : < .? .- .- - - . "’ -
: ~ . University of Kansas| bBrew Dawdsog_. R o

——— .\

ll-‘

MMH" H"!!ﬁr‘_ !W

L‘l"ls L' TION

—
Type Ana\y5|s

Last Lecture

Review: Type Systems

Discuss Type Systems
AWhat they are
AWhy we use them
Type Specification (optional)
AHow we communicate type systems
/ You Should Know \
A What a type system is ‘

A How type systems E
effect semantics Semantics

o /

@@ilay s Outlin

ype Analysis

Enforcing Type Systems
ADesign points

Type Analysis

AType checking

AType inference / synthesis

g

.
Semantics

Enf@r@m Type Systems

ype Analysis

Language property: how much
enforcement / checking to do?

Aldea 1: check what you can, allow
uncertainty

Aldea 2: check what you can, disallow
uncertainty completely

Aldea 3: check what you can, force
user to dispel uncertainty

Escaping the T yp@ System

Enforcing Types

Some languages allow an explicit S A
YSIya 02 asSaol IS¢ GKS (eSS ae

ATypecasting; allow one type to be used as
another type

Casting Within Hierarchy

Enforcing Types

Crosscasting (static check in Java)

Apple a = new Apple(); Class Hierarchy
Orange o = (Orange)a;
Downcasting([dynamic check in Java) { Fruit }

Fruit f = new Apple();

If (rand()) {

f = new Orange(); { Orange}
}
Apple dApp = (Apple)f;

Casting Within Hierarchy

Enforcing Types

Crosscasting (static check in Java)

Apple a = new Apple(); Class Hierarchy
Orange o = (Orange)a,
Downcasting([dynamic check in Java) { Fruit }

¢ Fruit f = new Apple();

¢ If (rand()) {
¢ f=new Orange(); {Orange}
¢}

 Apple dApp = (Apple)f;
vt

Strongly-Typed vs Weakly-Typed

Enforcing Types

Colloguial classification of
I £l y3dz 3SQa
A Degree to which type errors

are allowed to happen at
runtime

A Continuum without precise
definitions

G & LIS

v d N\

a €

ausy

10

Typ@ Satety

nforcing Types

A Has a precise definition

I All successful operations must be
allowed by the type system

A Java was explicitly designed t
be type safe |

I A variable of some type can on e
be used as that type without 7
causing an error

A C is very much not type safe
Al bbb AayQi SAUKSNI 6dzi AG Aa

11

Type Safety Violations

Type Enforcement

C
Format specifier

printt (A %s o, 1) ;

Memory safety

struct big{
int a[1000000];

3

struct big * b = malloc(1);

C++
Unchecked casts
class Tl {chara};
class T2 {intb };
Int main {
T1*myT1l = new T1();
T2 *myT2 = new T2();
myT1 = (T1*)myT2;

T}Zp@ Research

etour: Ungraded Material

A huge topic in and of itself

ASome C®eparmentK | & S
F20dzayY ¢

@ LIS a ¢

at
t N2ANJ YYAY

Type Checking

14

Research on Types

DETOUR

Liquid Types*

University of Califor

M. Rondon Ming Kawaguchi Ranjit Jhala

San Diego

{ prondan, mwookawa, jhala} @cs. ucsd edu

Abstract

We present Logically Qualified Data Types, abbreviated to Liguid
Types, a system that combines Hindley-Milner type inference with
Predicate Abstraction to automatically infer dependent types pre-
cise enough to prove a variety of safety properties. Liguid types
allow programmers to reap many of the benefits of dependent
types, namely static verification of critical properties and the elim-
ination of expensive run-time checks, without the heavy price of
manual annotation. We have implemented liquid type inference in
DSOLVE, which takes as input an OCAML program and a set of log.

ical qualifiers and infers dependent types for the expressions in the
OcaML program. To demonsirate the uiility of our approach, we
describe experiments using DSOLVE to statically verify the safety
of array accesses on a sel of OCAML benchmarks that were pre:
ously annotated with dependent types as part of the DML project.
‘We show that when used in conjunction with a fixed set of array
bounds checking qualifiers, DSOLVE reduces the amount of man-
ual annotation required for proving safety from 31% of program
text to under 1%,

Categories and Subject Descriptors D24 [Software Engineer-
ing]: Software/Program Verification: F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Reliabi

y, Verification

Keywords Dependent Types, Hindley-Milner, Predicate Abstrac-
tion, Type Inference

1. Introduction

Modern functional programming languages, like ML and Haskell,
have many features that dramatically improve programmer produc-
tivity and ‘softw reliability. Two of the most significant are strong
static typing, which detects a host of errors at compile-time, and
type inference, which (almosty eliminates the burden of annota
the program with type information, thus delivering the benefits of
strong stalic typing for free.

“This work was supported by NSF CAREER grant CCF-0644
PDOS gram CNS-0720802, NSF Collborative mm c ('F 070264
gift from Microsoft Rescarch.

Permission 1o make digital or hard copies of all o part of this work for personal ac
classroom use is granted withou fee provided that copies are not maie or distribuled
fioe profit o commerc ial advantge and that copses bear this motice and the full citation
on the first page. To copy otherw e, lo republish, 10 post on servers or to redistribute

o lists, requires prior specific permission and/or a fee.
PLDI'OS, Jume 7-13, 2008,
Copyright

ueson, Arizona, US

159

The utility of these type sysiems stems from their ability to pre-
dict, at compile-time, invariants about the run-time values com-
puted by the program. Unfortunately, classical type systems only
capture relatively coarse invariants. For example, the system can
express the fact that a variable i is of the type int, meaning that
it is always ger, but not that it is always an integer within a
certain range, say between 1 and 99. Thus, the type system is un-
J)l: o statically ensure the safety of critical operations, such as a
division by 1, or the aceessing of an array a of size 100 at an index
1 Instead, the language can only provide a weaker dynamic safety
guarantee at the additional cost of hig overhead.

In an exciting development, several authors have proposed
use of dependent types [20] as a mechanism for enhancing the
expressivity of type systems [14, 27, 2, 22 10]. Such a system can
express the fact

iz {wiint |1 < wAp <00}

which is the usual type int together with a refinement stating that
the run-time value of i is an always an integer between 1 and 99.
Pfenning and Xi devised DML, a practical way to integrate such
types inte ML, and demonstrated that they could be used to recover
static guarantees about the safety of array accesses, while simul-
taneously making the program significantly faster by eliminating
run-time checking merhe.ul [27). However, these benefits came at
the price of atic inference. In the DML about
31% of the code {or 17% by number of lines) is manual annotations
that the typechecker needs to prove safety. We believe that this non-
trivial annotation burden has hampered the adoption of dependent
types despite their safety and performance henefits

We present Logically Qualified Data Types, abbreviated o Lig-
uid Types, a system for automatically inferring dependent types pre-
cise enough to prove a variety of safety properties, thereby allow-
ing programmers to reap many of the benefits of dependent types
without paying the heavy price of manual annotation. The heart of
our inference algorithm is a technigue for blending Hindley-Milner
type inference with predicate abstraction, a technique for synthe-
riants for imperative programs that forms the algo-
core of several software model checkers [3, 16, 4, 29, 17].
Our system takes as input a program and a set of logical qualifiers
which are simple boolean predicates over the program variables, a
special value variable v, and a special placeholder variable » that
can be instantiated with program variables. The system then infers
Tiguid types, which are dependent types where the refinement pred-
icates are confunctions of the logical qualifiers.

In our system, type checking and inference are decidable for
three reasons (Section 3). First, we use a conservative but decidable
notion of subtyping, where we reduce the subtyping of arbitrary
depemlen[types to a set of implication checks over base types,
deemed to hold if and only if an embedding of
ion into a decidable logic yields a valid formula in

an expression hz\ a valid liguid type derivation
only if it has a valid ML type derivation, and the dependent type

14

Refinement Types

Type Checking

AA type enhanced with a predicate which must hold for
any element of that type

"MDw O {¢ Dast P ¢ 1

ACould imagine enhancing a type system with
annotations for all kinds of properties

A Singleuse variable
AHigh security/low security (neimterference)

[DETOUR

o~

.

More Research on Types [pETOUR

Type Checking

BUZZF@ED News ; Quizzes Tasty A Bgyiews More ~

hlentiis;aipursued interest¥In‘other wqrdé
ing that'you’re willing to practice, 'you'ca
. - ;

16

PﬁybaCkm on Type Checking

ype Checking

AType checking is a good WA N
place to get extra Yt
programmer hints: Te o [

- Programmers are already o
familiar with typing logic S, i .
- The analysis is already < ‘T %)

well-formulated - Li

—

[DETOUR

EEE—

17

Formal Type Systems

End Detour: Done with Ungraded Material

Reasons tor Typing

Type Checking

Generate appropriate code for operations

A+ B
A String concatenation? Integer addition? Floatpmjnt
addition
Catch runtime errors / security

AMake sure operations are sensible
AAugment type system with addition checks

Types In Action

Type Checking

Type Analysis
AAssigning types to expressions

AFlavors:

AType synthesig get type of an AST
node fromA Ccldidren

AType inference; get type of an AST
Yy2RS TNRBY A0Qa dz

Type Checking

AEnsure that type of a construct is
allowed by the type system

Hmpﬂ@m@ntm Our Type Checker

ype Checking

Implementing Typing

Our Type System

Structurallysimilar to nameAnalysis

AHistorically, intermingled witmameAnalysis

A52yS a LINIL 2F ' {¢ I Gd4GdNRIOdzi
Add atypeCheckmethod to AST nodes

ARecursively walk the AST checking subtypes
AGLYAARS 2dzié | yLfeanra
A Attach types to nodes
APropagate an error symbol

Binary Operators

Implementing Static Typing

AGet the type of the LHS
AGet the type of the RHS

ACheck that the types are
compatible for the PlusNode
operator

ASet thekind of the node Ihs rhs
be a value

ASet thetype of the node

to be the type of the A]
2LISNI UAZ2y Qa Nbadzt U

(int)

(int) (int)

23

Literals

Implementing Static Typing

ACannot be wrong

AJust pass the type of the
literal up the tree

(int)

24

Variables

Implementing Static Typing

ALook up the type of the
declaration

AThere should be a . ,
28Y02f afAyl1SRE (2
node

APass symbol type up the mysymbol

tree
Kind: VAR
[type: int J

aJé

bl YSY

25

Function Calls

Implementing Type Checking

AGet type of each actual (bool)

AMatch against formals of the
OFtft SR Tdzy Ou A2y Qa FnCallNode

APropagate return type to

parent node mylD
(int,int © bool) (int,int)

IDNode ActualsList

args

mySymbol

Kind:Func
Type:int,int © bool

b | Y $réatedThas

26

Statements

Implementing Type Checking

Always have void type (void)
AMake sure to check child expression OutputStmt
ANo type to propagate

ASome versions of analysis may propagate QaIENGE
boolean error / no error

(int)

IntLit IDNode
mySymbol

Kind: VAR
type: int
bl YSY |d&

27

Other AST Node Types

Implementing Type Checking

Follow these same principles
AEnsure that children are welyped

AApply a combination rule
Alf valid: infer a type and propagate out
Alf invalid: propagate error

Exercise: Draw Type Analysis

Bonus Exercise

1.int a;

2. bool f;

3. int m(int arg){

4. intb;

5. return arg +1;
6.}

29

Hanali ing Errors

Implementing Type Checking

A2 SQR digtihcerrorstatt
the same time e
AS52y Qu 3IAQDS dzZLJ | ,:-.-m"’f::'::f:-f:;.:ﬂ:i‘. B
A5 2y QiU NBELIZ NI O (s
multiple times w.,‘ Q‘N“ s

o ems

mode lu ldo;\' or disakle

When you get error as an St s 8 8 bk o

echnical information:

operand

3. 573 ~ Address FRGETARS base at

A52y Qi 0 NB O ND L2 |ZEEStre

your sSystes administrace cal supg
sistance.

AAgain, passerror up the tree

30

