
Review: Type Systems

Give an example of a C program that uses type coercion

1

Housekeeping

2

ÅP3 ultimate deadline tonight

ÅP4ǊŜƭŜŀǎŜŘ ά{ŀǘǳǊŘŀȅ ƳƻǊƴƛƴƎέΣ i.e.Friday @ 11:59 PM + 1 minute

University of Kansas| Drew Davidson

3

Semantics

Review: Type Systems

Discuss Type Systems

ÅWhat they are

ÅWhy we use them

Type Specification (optional)

ÅHow we communicate type systems

4

You Should Know

ÅWhat a type system is
Å How type systems

effect semantics

Type Analysis

Enforcing Type Systems

ÅDesign points

Type Analysis

ÅType checking

ÅType inference / synthesis

5

Semantics

Type Analysis

Language property: how much
enforcement / checking to do?

ÅIdea 1: check what you can, allow
uncertainty

ÅIdea 2: check what you can, disallow
uncertainty completely

ÅIdea 3: check what you can, force
user to dispel uncertainty

6

e.g.C

e.g.Haskell

e.g.Java, Rust

Enforcing Types

Some languages allow an explicit
ƳŜŀƴǎ ǘƻ άŜǎŎŀǇŜέ ǘƘŜ ǘȅǇŜ ǎȅǎǘŜƳ

ÅTypecasting ςallow one type to be used as
another type

7

Enforcing Types

Cross-casting (static check in Java)

Apple a = new Apple();

Orange o = (Orange)a;

Downcasting(dynamic check in Java)

Fruit f = new Apple();

if (rand()) {

f = new Orange();

}

Apple dApp = (Apple)f;

8

Fruit

Apple Orange

Class Hierarchy

Compiler check

Runtime check

Enforcing Types

Cross-casting (static check in Java)

Apple a = new Apple();

Orange o = (Orange)a;

Downcasting(dynamic check in Java)

Fruit f = new Apple();

if (rand()) {

f = new Orange();

}

Apple dApp = (Apple)f;

9

Fruit

Apple Orange

Class Hierarchy

Runtime check

Compiler check

Enforcing Types

10

Colloquial classification of
ŀ ƭŀƴƎǳŀƎŜΩǎ ǘȅǇŜ ǎȅǎǘŜƳ

ÅDegree to which type errors
are allowed to happen at
runtime

ÅContinuum without precise
definitions

Enforcing Types

11

ÅHas a precise definition
ïAll successful operations must be

allowed by the type system

ÅJava was explicitly designed to
be type safe
ïA variable of some type can only

be used as that type without
causing an error

ÅC is very much not type safe

Å/ҌҌ ƛǎƴΩǘ ŜƛǘƘŜǊ ōǳǘ ƛǘ ƛǎ ǎŀŦŜǊ

Type Enforcement

C

Format specifier
printf (ñ%sò, 1);

Memory safety
struct big{

int a[1000000];

};

struct big * b = malloc(1);

C++
Unchecked casts

class T1 { char a };

class T2 { int b };

int main {

T1 * myT1 = new T1();

T2 * myT2 = new T2();

myT1 = (T1*)myT2;

}

12

Detour: Ungraded Material

13

Type Checking

A huge topic in and of itself

ÅSome CS DeparmentsƘŀǾŜ ŀ άt[¢έ
ŦƻŎǳǎΥ άtǊƻƎǊŀƳƳƛƴƎ [ŀƴƎǳŀƎŜǎ ŀƴŘ
¢ȅǇŜǎέ

14

Type Checking

ÅA type enhanced with a predicate which must hold for
any element of that type

ÅCould imagine enhancing a type system with
annotations for all kinds of properties
ÅSingle-use variable

ÅHigh security/low security (non-interference)

15

ὪḊᴓᴼ ὲḊᴓȿὲϷς π

ÅA huge topic in and of
itself
ÅSome CS Departments
ƘŀǾŜ ŀ άt[¢έ ŦƻŎǳǎΥ
άtǊƻƎǊŀƳƳƛƴƎ
[ŀƴƎǳŀƎŜǎ ŀƴŘ ¢ȅǇŜǎέ

16

??

?

?

Type Checking

Type Checking

ÅType checking is a good
place to get extra
programmer hints:

- Programmers are already
familiar with typing logic

- The analysis is already
well-formulated

17

End Detour: Done with Ungraded Material

18

Type Checking

Generate appropriate code for operations

A + B
ÅString concatenation? Integer addition? Floating-point

addition

Catch runtime errors / security
ÅMake sure operations are sensible

ÅAugment type system with addition checks

19

Type Checking

Type Analysis

ÅAssigning types to expressions

ÅFlavors:
ÅType synthesis ςget type of an AST

node from ƛǘΩǎchildren

ÅType inference ςget type of an AST
ƴƻŘŜ ŦǊƻƳ ƛǘΩǎ ǳǎŜ ŎƻƴǘŜȄǘ

Type Checking

ÅEnsure that type of a construct is
allowed by the type system

20

Type Checking

21

Our Type System

Structurally similar tonameAnalysis

ÅHistorically, intermingled with nameAnalysis

Å5ƻƴŜ ŀǎ ǇŀǊǘ ƻŦ !{¢ ŀǘǘǊƛōǳǘŜ άŘŜŎƻǊŀǘƛƻƴέ

Add a typeCheckmethod to AST nodes

ÅRecursively walk the AST checking subtypes
ÅάLƴǎƛŘŜ ƻǳǘέ ŀƴŀƭȅǎƛǎ

ÅAttach types to nodes

ÅPropagate an error symbol

22

Implementing Static Typing

ÅGet the type of the LHS

ÅGet the type of the RHS

ÅCheck that the types are
compatible for the
operator

ÅSet the kind of the node
be a value

ÅSet the type of the node
to be the type of the
ƻǇŜǊŀǘƛƻƴΩǎ ǊŜǎǳƭǘ

23

PlusNode

(int)

lhs rhs

(int)

(int)

Implementing Static Typing

ÅCannot be wrong
ÅJust pass the type of the

literal up the tree

24

IntLitNode

(int)

Implementing Static Typing

ÅLook up the type of the
declaration
ÅThere should be a
ǎȅƳōƻƭ άƭƛƴƪŜŘέ ǘƻ ǘƘŜ
node

ÅPass symbol type up the
tree

25

IdNode
mySymbol

(int)

Kind: VAR
type: int
bŀƳŜΥ άǾέ

Implementing Type Checking

ÅGet type of each actual

ÅMatch against formals of the
ŎŀƭƭŜŘ ŦǳƴŎǘƛƻƴΩǎ ǎȅƳōƻƭ

ÅPropagate return type to
parent node

26

FnCallNode

myID

(int)

mySymbol

Kind: Func
Type: int,intᴼbool
bŀƳŜΥ άgreaterThanέ

ActualsList

(int)

[0] [1]

(bool)

Χ Χ

(int,int)

IDNode

args
(int,int bOool)

Implementing Type Checking

Always have void type

ÅMake sure to check child expression

ÅNo type to propagate

ÅSome versions of analysis may propagate
boolean: error / no error

27

OutputStmt

PlusNode

IntLit IDNode
mySymbol

Kind: VAR
type: int
bŀƳŜΥ άǾέ

(int) (int)

(int)

(void)

Implementing Type Checking

Follow these same principles

ÅEnsure that children are well-typed

ÅApply a combination rule
ÅIf valid: infer a type and propagate out

ÅIf invalid: propagate error

28

Bonus Exercise

29

1. int a;

2. bool f;

3. int m(int arg){

4. int b;

5. return arg + 1;

6. }

Implementing Type Checking

Å²ŜΩŘ ƭƛƪŜ ŀƭƭ distinct errors at
the same time
Å5ƻƴΩǘ ƎƛǾŜ ǳǇ ŀǘ ǘƘŜ ŦƛǊǎǘ ŜǊǊƻǊ

Å5ƻƴΩǘ ǊŜǇƻǊǘ ǘƘŜ ǎŀƳŜ ŜǊǊƻǊ
multiple times

ÅWhen you get error as an
operand
Å5ƻƴΩǘ όǊŜύǊŜǇƻǊǘ ŀƴ ŜǊǊƻǊ

ÅAgain, pass error up the tree

30

